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This paper presents a sectional analysis tool which can compute the complete torque-twist behaviour of
reinforced concrete beams and shells. The cross section is modelled as a 2-D grid of triaxial elements rep-
resenting the concrete and uniaxial elements representing the longitudinal reinforcement. Fixed strain
patterns based on kinematic assumptions are used instead of using the finite element method to calculate
strain distributions corresponding to sectional strains. Constitutive models for the concrete are based on
the Modified Compression-Field Theory, though tension stiffening is neglected in the proposed model’s
current implementation. A key assumption used in this model is that the shear strain distribution caused
by twists obtained from a linear elastic analysis can be used to describe the nonlinear behaviour of a
member following cracking. The validity of this assumption when applied to rectangular sections is con-
firmed based on a study of 115 tests from the literature. Excellent agreement of peak strength and overall
torque-twist behaviour are observed when comparing the model predictions and experimental data from
these tests. Areas of future work are to improve the capabilities of the model are identified.

� 2019 Elsevier Ltd. All rights reserved.
1. Torsion in reinforced concrete structures

In the design or analysis of a reinforced concrete structure, the
ability of its members to carry torsion and resist twisting displace-
ments needs to be considered. Common instances in which torsion
is particularly important include bridges curved in space or span-
drel beams in buildings – for members such as these, the torsion
is predominantly carried by shear stresses which circulate around
the member’s cross section. As the tensile strength of concrete is
low, even small torsions can cause the formation of diagonal cracks
which then spiral around the member. These cracks lead to a dra-
matic reduction in the torsional stiffness of the member, which
may lead to a redistribution of how the loads are carried by the
overall structure. The cracking also alters how the torsion is
resisted by the member, with the circulating shear stresses now
being carried by fields of diagonal compression in the cracked con-
crete which are equilibrated by tensile forces carried by transverse
and longitudinal reinforcement.

The post-cracking response of reinforced concrete members has
important implications for both the global behaviour of the overall
structure and the local behaviour of the member carrying the tor-
sion. In statically indeterminate structures, the reduction in tor-
sional stiffness following cracking leads to redistribution in the
loads throughout the structure as the cracked member continues
twisting in order to maintain compatibility. In statically determi-
nate structures where the load path does not change following
cracking, the torsional strength of the cracked member is required
to be large enough so that equilibrium is maintained in the struc-
ture to avoid collapse. These two phenomena were identified by
Collins and Lampert in 1973 as Compatibility Torsion and Equilib-
rium Torsion respectively [1]. To account for these two types of
torsion, an engineer would benefit from knowing how the stiffness
of the member changes following cracking, whether or not the
member is able to achieve large twists without failing, and what
the member’s strength is when resisting torsion in combination
with axial loads, shears and moments. These requirements natu-
rally call for practical nonlinear analysis tools which can reliably
predict the full torque-twist behaviour of reinforced and pre-
stressed concrete members.

1.1. Challenges with numerical modelling of reinforced concrete
members subjected to torsion

Modelling the behaviour of reinforced concrete members sub-
jected to torsion is inherently a 3-D problem, as torsion is not pre-
sent when conducting a 2-D analysis of a structure or member. The
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current state-of-the-art for dealing with torsion in reinforced con-
crete members makes use of finite element methods in tandem
with nonlinear constitutive models. These approaches can be lar-
gely grouped into using solid elements to model portions of struc-
tures, an example being VecTor3 developed at the University of
Toronto by Vecchio and Selby [2] (shown in Fig. 1), or using frame
elements whose stiffnesses are derived from a finite element anal-
ysis of the kinematic behaviour of member’s cross section (such as
methods developed by Bairan and Mari [3], Capdevielle et al. [4]
and Gregori et al. [5]).

The strength of these approaches is that the response of arbi-
trarily shaped members can be modelled in great detail, with pre-
vious validation studies demonstrating their ability to accurately
predict the torque-twist response of experiments found in the lit-
erature. However, their feasibility for practical application is lim-
ited by the large computational resources required to conduct an
analysis. The costs of constructing and inverting a large global stiff-
ness matrix can be very high, particularly when working the large
meshes associated with using solid elements. The process is made
even more challenging when modelling nonlinear behaviour, as
many of the sophisticated constitutive models for the cracked con-
crete require iteration to converge on material stiffnesses at each
load step. To avoid prohibitively long runtimes, a coarse mesh in
the numerical model may be needed when using these methods,
which detracts from the intended benefits offered by these models.

1.2. Sectional analysis of reinforced concrete members

Sectional analysis methods characterize the behaviour of a
member by analyzing the behaviour of the cross section when sub-
jected to stress resultants such as axial load, shear, moment and
torsion. These methods, similar in approach to the layered analysis
in fiber models, can quickly perform detailed calculations across a
cross section because a global stiffness matrix does not need to be
assembled and inverted. Response-2000 by Bentz, shown schemat-
ically in Fig. 2, is a widely used example of a sectional analysis pro-
gram for reinforced concrete members [6]. Plane sections are
Fig. 1. Sample output from a VecTor3 analysis for a hollow box (left) and T-section
(right) subjected to pure torsion.

Fig. 2. Representations of the cross section of a reinforced concrete member in Re
assumed to remain plane after deformation, the shear strain distri-
bution is calculated by considering equilibrium between the fibers
and the Modified Compression-Field Theory (MCFT) is used as a
constitutive model for the concrete stress-strain behaviour [7].
Unfortunately, Response-2000 cannot account for torsion as it is
only formulated to obtain the response caused by combinations
of axial load, moment and shear.

Sectional analysis programs which can account for torsion in
combination with axial load, bending and shear typically make
use of a space truss model, which represents the cross section as
a space truss with four chords and four webs arranged in a rectan-
gular shape. Bredt’s simple equation for thin-walled tubes is typi-
cally used to estimate the shear flows caused by torsion, instead of
a more detailed approach. An example of a space truss model
which uses the MCFT is COMBINED, developed by Rahal and Collins
[8] and shown in Fig. 2. Other models in the literature such as the
Softened Membrane Model for Torsion (SMMT) by Jeng and Hsu
[9], the Combined-Action Softened Truss Model (CA-STM) by Green
and Belarbi [10] and the Modified Variable Angle Truss-Model
(MVATM) by Bernardo et al. [11] similarly use a space truss
approach, albeit using different constitutive relationships for con-
crete and steel. Although these space truss models are computa-
tionally efficient, their simplifications (such as using Bredt’s
equation and representing of the actual section as a rectangular
truss) mean that rigorously modelling arbitrarily shaped members
is more difficult compared using to the finite element approaches
mentioned in Section 1.1, and less information can be ascertained
about how the member is carrying the torsion.
2. Proposed analysis model

The proposed analysis model described in this paper is a sec-
tional analysis tool for obtaining the response of reinforced and
prestressed concrete members in pure torsion. The model combi-
nes the strengths of the finite element methods discussed in
Section 1.1 with the lower computational requirements of the sec-
tional analysis methods discussed in Section 1.2. While currently
implemented to only calculate the behaviour of rectangular sec-
tions in pure torsion, the methodology can be extended to account
for the response of a general cross section shape subject to the six
sectional stress resultants (axial load Nz, vertical shear Vy, lateral
shear Vx, vertical moment Mx, lateral moment My and torque Tz,
defined using the notation shown on the space truss model in
Fig. 2).
2.1. General framework and methodology

To perform the analysis, the following steps are taken. These
steps are presented at a high level and are described in further
detail in Sections 2.1–2.4 and summarized in Section 2.5 which
sponse-2000 (left) and using a space-truss model such as COMBINED (right).
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illustrates the special case of applying the general procedure for
obtaining the torque-twist response of a member in pure torsion.

(1) Create a representation of the cross section in the x-y plane
using a 2-D grid of elements which represents the reinforced
concrete and steel reinforcement materials.

(2) Calculate strain distributions which correspond to the six
possible sectional strains.

(3) Specify a desired ratio of (Nz, Vy, Vx, Mx, My, Tz) that the sec-
tion will carry.

(4) Specify a sectional strain value which will guide the analysis.
For pure torsion, this is the twist, wz.

(5) Apply a set of sectional strains. Using the strain distributions
calculated in step 2, calculate the longitudinal strain ez and
shear strains czy and czx in each element in the cross section.

(6) Calculate the distribution of axial and shear stresses in the
cross section using the material constitutive relationships.

(7) Integrate the stresses across the cross section to calculate
the global section stress resultants. If the ratio of stress
resultants does not match what was specified in step 3,
modify the proportion of sectional strains in an iterative
manner until convergence is achieved.

(8) Increment the guiding sectional strain in step 4 and repeat
steps 5–7 until the analysis is completed.

Representing the cross section in the model is done by discretiz-
ing the cross section into uniaxial elements, which represent the
longitudinal reinforcement, and triaxial elements, which represent
the reinforced concrete with embedded transverse reinforcement.
Sample discretization for a hollow beam and a slab strip or shell
element are shown in Fig. 3. Although these components are
described as elements, the model does not use the finite element
method as no global stiffness matrix is assembled and shape func-
tions are not used to describe how degrees of freedom in each ele-
ment interact with one another. Instead, each element is simply a
calculation point where the element stresses are calculated given
the strains at that point. Stress resultants are calculated by inte-
grating the element stresses over its area, Aelement.

The distribution of longitudinal axial strains and shear strains
throughout the cross section are obtained by using fixed strain dis-
tributions which correspond to each of the six sectional strains and
are explained in further detail in Section 2.2. These sectional
strains are the centroidal axial strain, ez0, the centroidal vertical
shear strain, czy0, the centroidal lateral shear strain, czx0, the verti-
cal curvature, /x, the lateral curvature, /y and the twist, wz. The
benefits of using fixed strain patterns is that element strains can
be directly computed given the sectional strains instead of being
derived from a finite element analysis, which allows the section
Fig. 3. Cross section discretization of a hollow beam (left) and slab strip or shell (right).
circles are uniaxial reinforcement elements. The section is defined in the X-Y plane, wit
to be finely discretized while maintaining a reasonable analysis
runtime.

Constitutive relationships used for modelling the triaxial stress-
strain behaviour for reinforced concrete and the uniaxial stress-
strain behaviour for conventional and prestressed reinforcement
are presented in Section 2.3. Although these models are used in
the current implementation, the framework is flexible enough to
accommodate any constitutive models for the reinforced concrete
and steel materials.

It should be noted that the model is currently implemented to
only handle pure torsion and hence the associated strain distribu-
tions for czy0 and czx0, which are associated with Vy and Vx, are not
used. Their derivation remains an area of future work as the frame-
work is developed further. However, the steps described in the
above procedure are general enough to completely describe how
to perform an analysis involving all six stress resultants if these
distributions are known.

2.2. Assumed strain distributions

To perform the analysis, the proposed model uses fixed strain
patterns corresponding to each sectional strain to evaluate the
axial and shear strains over the entire cross section. This means
that given a set of sectional strains (ez0, czy0, czx0, /x, /y, wz), the ele-
ment strains (ez, czy,czx) can be calculated at each point in the cross
section. These strains are then used to evaluate the axial stresses fz
and shear stresses vzy and vzx in each element which produce the
six sectional stress resultants when integrated over the cross sec-
tion. Although these three element strains are sufficient for sec-
tional analysis with linear elastic materials, for orthotropic
materials such as cracked reinforced concrete, six strains are
required to obtain a complete strain state and maintain equilib-
rium in each element in the section. These additional strains which
describe how the cross section distorts, (ex, ey, cxy), are calculated
once the concrete has begun to crack and nonlinear behaviour
begins.

2.2.1. Longitudinal strains
Longitudinal axial strains are calculated using a linear strain

profile per the Euler-Bernoulli plane sections hypothesis first
described by Hooke in 1678 [12]. The strains are calculated as:

ez x; yð Þ ¼ ez0 � y/x þ x/y ð1Þ

where ez0 is the axial strain at the centroid of the cross section, /x is
the vertical curvature causing flexural compression on the top of
the beam and /y is the lateral curvature causing flexural compres-
sion on the left side of the beam.
Coloured rectangular elements are triaxial reinforced concrete elements and black
h the z-direction being the longitudinal direction.
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2.2.2. Shear strains caused by twist
Shear strains caused by twist are calculated using St. Venant’s

assumption that when twisted, a member warps in the longitudi-
nal direction and the projection of the cross section onto a surface
perpendicular to its axis rotates as a rigid body. If this warping is
not restrained, the resulting torsion is resisted by circulatory shear
stresses (which contrasts with torsion carried by axial stresses
caused by restrained warping, referred to as warping torsion). By
assuming that the warping is constant along the length of the
member, the resulting shear strain distribution in the cross section
is described by the following equations:

czy x; yð Þ ¼ wz x� xoð Þ þ @uw x; yð Þ
@y

� �
ð2Þ

czx x; yð Þ ¼ wz � y� yoð Þ þ @uw x; yð Þ
@x

� �
ð3Þ

where czy and czx are the vertical and lateral engineering shear
strains respectively, wz is the twist, (xo, yo) are the coordinates of
the shear centre and uw is a function describing the warping of
the cross section.

Calculating the shear strain distribution of the cross section
assuming linear elastic behaviour can be done using Prandtl’s
stress function approach and using an assumed material shear
modulus G of unity:

@2/� x; yð Þ
@x2

þ @2/� x; yð Þ
@y2

¼ �2wz ð4Þ

where /* is the stress function related to the shear strains as shown
below:

czx x; yð Þ ¼ @/� x; yð Þ
@y

ð5Þ

czy x; yð Þ ¼ � @/� x; yð Þ
@x

ð6Þ

Eq. (4) can be easily solved using a finite difference or finite ele-
ment solution scheme given the boundary condition that /* is a
constant along the boundary. As the method makes no assumption
of the geometry of the member, the resulting distribution of strains
can be determined for an arbitrarily shaped solid or hollow cross
section. Plots of the stress function solution /* and resulting shear
strain distributions for a solid square cross section, a hollow square
cross section and a T-section are shown in the first two columns of
Fig. 4.

A key assumption in the method proposed in this paper is that
the member warps in the same manner both before and after
cracking, resulting in the same pattern of shear strains caused by
twisting. In reality, warping of a cracked reinforced concrete sec-
tion is a complex phenomenon affected by the geometry of the
member, the layout of reinforcement, the anisotropy of the con-
crete, the distribution of stiffness and the presence of accompany-
ing stress resultants such as axial load, moment, shear and torsion.
However, it has been found that for symmetrically reinforced
members loaded in pure torsion, using this simplifying assumption
allows reasonable prediction of the complete nonlinear response
be obtained in a computationally efficient manner.

To validate this approach, a series of analyses were performed
using VecTor3, a nonlinear finite element analysis software which
uses 3-D solid elements and has previously been shown to give
good results when modelling members carrying torsion [2]. The
resulting shear strain distributions for cracked symmetrically rein-
forced members with solid square, hollow square and T-shaped
cross sections are shown in the third column of Fig. 4. Comparing
the elastic strain distributions with the inelastic strain distribu-
tions obtained using VecTor3, there is good agreement in the over-
all trends present. For the square sections, the regions of high shear
strains are the same, and both models agree that the outside cor-
ners are areas of low shear strain. For the T-shape, the strain con-
centration around the re-entrant corners are present in both
models, and again there is good agreement between the two
regarding the regions of high and low shear strain.

The proposed methodology works best for members which are
symmetrically reinforced and loaded in pure torsion. This is
because the post-cracking distribution of stiffness is similar to that
of the uncracked section, resulting in a similar pattern of warping
being present. It becomes less appropriate for members whose
warping changes substantially following cracking. Examples of
when this occurs include when the member is non-
symmetrically reinforced, which results in the member curving
after cracking, or when the section is not uniformly cracked while
being twisted (which occurs when torsion is present in combina-
tion with bending and/or shear) – the resultant non-uniform distri-
bution of stiffness results in changes to the pattern of warping.
However, validation of the model under combined torsion and
bending in Section 4 demonstrates that reasonable results are still
attainable even when these idealized conditions are not present.

2.2.3. Section distortion strains
A common assumption in beam theories for linear elastic mate-

rials, such as the bending of bars illustrated by Timoshenko, is that
the cross section is rigid and neither expands, described by trans-
verse axial strains ex and ey, nor distorts, described by in-plane
shear strains cxy [13]. In elasticity, these geometric assumptions
result in the assumption that the transverse clamping stresses fx
and fy and the in-plane shear stress vxy are equal to zero. However,
reinforced concrete members need to expand following cracking in
order to engage the transverse reinforcement and hence satisfy
equilibrium when carrying shear stresses.

In the current implementation, distortion strains are obtained
by assuming that fx = fy = vxy = 0 at all points in the cross section
and calculating (ex, ey, cxy) in order to satisfy this condition. For a
3-D constitutive model, this results in reducing the material consti-
tutive matrix [D] from a 6 � 6 matrix, notated as follows:

f x
f y
f z
vxy

vzy

vzx

2
666666664

3
777777775
¼ D½ �6�6

ex
ey
ez
cxy
czy
czx

2
666666664

3
777777775

ð7Þ

To a reduced 3 � 3 formulation:

f z
vzy

vzx

2
64

3
75 ¼ D�½ �3�3

ez
czy
czx

2
64

3
75 ð8Þ

Here, [D*] is the reduced constitutive matrix which is derived by
condensing the original constitutive matrix [D] using the afore-
mentioned assumptions on fx, fy and vxy. The distortion strains
can be then expressed as a linear combination of the section axial
and shear strains using the following relationship:

ex
ey
cxy

2
64

3
75 ¼ � r½ �3�3

ez
czy
czx

2
64

3
75 ð9Þ

where [r] is a reduction matrix obtained when the converting the
original 6 � 6 constitutive matrix [D] to the 3 � 3 [D*]. Sample
expansion and distortion strains calculated when analyzing a



Fig. 4. Comparison of shear strain distributions caused by twist for solid square, hollow square and T-shaped cross sections. Darker colours indicate a larger magnitude of /*
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symmetrically reinforced rectangular cross section in pure torsion
which is fully cracked are shown in Fig. 5.

2.3. Constitutive modelling

The proposed analysis methodology requires constitutive mod-
els describing the triaxial behaviour of reinforced concrete and uni-
Fig. 5. Example expansion strains (horizontal, ex and vertical, ey) and distortion
strains for a cracked section subjected to pure torsion. Darker colours indicate a
higher magnitude of strain.
axial behaviour of reinforcing and prestressing steel. Fig. 6
summarizes the constitutive models for concrete and steel which
were used for the current implementation of the model. It should
be noted that although the following subsections describe these
models in greater detail, any constitutive models which meet these
requirements may be used within the overall analysis framework.

2.3.1. Reinforced concrete
Reinforced concrete elements are used to model all parts of the

cross section apart from the longitudinal steel. Fig. 7 shows a rep-
resentation of a typical reinforced concrete element containing
transverse reinforcement. This reinforcement is smeared into the
concrete element, with the quantity of reinforcement in each ele-
ment with dimensions lenx by leny being:

qx ¼
As;x

szleny
ð10Þ

qy ¼
As;y

szlenx
ð11Þ

where As,x and As,y are the area of transverse steel assigned to the
element in the x- and y- directions respectively and sz is the spacing
of this transverse reinforcement in the longitudinal direction.



Fig. 6. Constitutive relationships for concrete (left) and steel reinforcement (right).

Fig. 7. Reinforced concrete element notation.
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Although the method for smearing the reinforcement is smeared
throughout the cross section is at the discretion of the user, smear-
ing the steel mostly around the perimeter of the cross section – as
shown in the hollow box in Fig. 3 – is the most realistic representa-
tion of the transverse reinforcement when performing a torsional
analysis. More discussion on the smearing methodology when per-
forming the analyses described in the paper is included in Section 3.

Prior to cracking, the concrete is treated as an isotropic linear
elastic material and the smeared reinforcement has little effect
on the overall behaviour. In the absence of provided test data,
the Young’s modulus of the concrete, Ec, the cracking stress ft0

and the cracking strain et0 can be calculated as [14]:

Ec ¼ 3320
ffiffiffiffi
f
0
c

q
þ 6900 ð12Þ

f
0
t ¼ 0:33

ffiffiffiffi
f
0
c

q
ð13Þ

e0t ¼ f
0
t

Ec
ð14Þ

where Ec, ft0 and fc0, the cylinder compressive strength, are in MPa
units.

Following cracking however, the cracked concrete is modelled
as an orthotropic material with stiffnesses defined in its principal
directions. A rotating crack model is used where the inclination
of the principal stresses is assumed to coincide with the inclination
of the principal strains in the same manner as the Modified
Compression-Field Theory [7] and Poisson effects are neglected
after cracking [2]. Thus, the principal stresses in the cracked con-
crete are evaluated using the principal strains in the element.

The constitutive matrix of the cracked reinforced concrete, [D],
is defined as:

D½ � ¼ Dc½ � þ Ds½ � ð15Þ
where [Dc] and [Ds] are the constitutive matrices for the cracked
concrete and steel respectively:

Dc½ � ¼ Tc½ �T

E
�
c1 0 0 0 0 0

0 E
�
c2 0 0 0 0

0 0 E
�
c3 0 0 0

0 0 0 E
�
c1E

�
c2

E
�
c1þE

�
c2

0 0

0 0 0 0 E
�
c2E

�
c3

E
�
c2þ E

�
c3

0

0 0 0 0 0 E
�
c1E

�
c3

E
�
c1þ E

�
c3

2
666666666666664

3
777777777777775

Tc½ � ð16Þ

Ds½ � ¼

qxE
�
sx 0 0 0 0 0

0 qyE
�
sy 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
66666666664

3
77777777775

ð17Þ

where [Tc] is the rotation matrix containing direction cosines (li, mi,
ni) from x-y-z coordinates to the principal directions 1-2-3 [15] and

E
�
is the secant modulus of the concrete or steel, defined as the ratio

of the material stress component fi divided by its component of
total strain ei:

Tc½ � ¼

l21 m2
1 n2

1 l1m1 m1n1 n1l1

l22 m2
2 n2

2 l2m2 m2n2 n2l2

l23 m2
3 n2

3 l3m3 m3n3 n3l3
2l1l2 2m1m2 2n1n2 l1m2þ l2m1 m1n2þm2n1 n1l2þn2l1
2l2l3 2m2m3 2n2n3 l2m3þ l3m2 m2n3þm3n2 n2l3þn3l2
2l3l1 2m3m1 2n3n1 l3m1þ l1m3 m3n1þm1n3 n3l1þn1l3

2
6666666664

3
7777777775

ð18Þ
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E
�
i ¼ f i

ei
ð19Þ

The stress-strain behaviour of the concrete in compression is
modelled using Popovic’s formulation [16], shown below:

f c ecð Þ ¼ bf
0
c

n ec=e
0
c

� �
n� 1þ ec=e0

c

� �nk ð20Þ

where fc0 is the cylinder crushing strength of the concrete, ec0 is the
strain corresponding to the peak compressive stress, n is a fitting
parameter and k is a parameter which accounts for the loss of
post-peak ductility in high strength concrete. Equations for n, k
and ec0 based on fc0 in MPa units are [16,17]:

n ¼ 0:8þ f
0
c

17
ð21Þ

k ¼
1:0 ec=e

0
c < 1:0

0:67þ f
0
c

62 � 1:0 1:0 � ec=e
0
c

(
ð22Þ

e0
c ¼

f
0
c

Ec

n
n� 1

ð23Þ

Due to the presence of tensile strains in the cracked concrete,
the compression response is modified by a compression softening
parameter b which accounts for the reduction in strength and stiff-
ness of cracked concrete caused by the principal tensile strain e1.
The formulation used for b is the expression used by Vecchio and
Selby which is [2]:

b ¼ 1
0:8þ 0:34 e1=e0

c

� � � 1:0 ð24Þ

In tension, it is assumed that the concrete does not carry any
tensile stress after cracking occurs (i.e. the tension stiffening effect
is neglected). This can be represented as:

f c ¼
Ecec 0 � ec � e0

t

0 e0
t � ec

(
ð25Þ

This simplified constitutive model for concrete in tension was
selected for two main reasons. The first reason is the lack of vali-
dated tension stiffening models which account for how the distri-
bution of reinforcement affects the distribution of tensile stresses
in the cracked concrete. Several approaches have been proposed
in the past: Bentz modifies the basic tension stiffening expression
in the MCFT by accounting for bond, though its application is lim-
ited to 2-D sectional analysis [18]. Proestos similarly introduces a
modification factor for concrete elements to reduce the tension
stiffening away from reinforcement [19]. In the VecTor suite of
finite element programs developed at the University of Toronto,
concrete located within a distance of 7.5 times the bar diameter
around the reinforcement is assumed to use the Bentz tension stiff-
ening model and tension softening equations are used beyond that
[20]. Although these approaches have been shown to work well for
their respective applications, a rigorous method for 3-D sectional
analysis that has been validated against experimental data is not
yet available for use.

The second reason for using a simplified approach is due to the
difficulty of implementing a crack check to limit the tensile stres-
ses in the concrete once the reinforcement begins to yield or when
aggregate interlock breaks down. As explained by Vecchio and Col-
lins [7] and later illustrated by Bentz [6], the average tensile stres-
ses in the reinforced concrete must be limited by local behaviour at
a crack. Neglecting this check can be dangerous as it leads to over-
estimating the strength of a members whose behaviour are con-
trolled by yielding. Although Bentz describes a method for
reducing the tensile stresses upon yield for a 2-D sectional analysis,
an analogous procedure for limiting the tensile stresses in the con-
crete for 3-D sectional analysis remains an area of future work.

This simple assumption of neglecting post-cracking tensile
stresses results in a model which tends to under-predict the tor-
sional stiffness after cracking and conservatively estimate the
strength of members whose torsional capacity is significantly
influenced by tension in the concrete after cracking. This second
case may occur in beams which contain large amounts of longitu-
dinal steel and small amounts of transverse steel, as the tensile
stresses in the concrete may account for a large proportion of the
overall tensile stresses in the cracked member at failure. However,
for beams which fail due to yielding of both directions of steel (a
case where yielding of the steel at the crack controls the response
at failure) or whose peak load are governed by crushing of the con-
crete, accurate results can still be obtained by using this simple
constitutive relationship.

2.3.2. Reinforcing steel
Conventional reinforcement – either the transverse steel

smeared into the reinforced concrete elements or the longitudinal
reinforcement – is modelled as having an elastic-plastic stress-
strain response, with strain hardening being neglected. The follow-
ing equation is used for bars in tension and an analogous expres-
sion is used for bars in compression:

f s ¼ Eses � f sy ð26Þ
where fs is the is the reinforcement stress, Es is the Young’s modulus
of the steel taken to be 200,000 MPa, es is the steel strain and fsy is
the yield stress. Note that dowel action is neglected and perfect
bond between the reinforcement and the surrounding concrete is
assumed.

2.3.3. Prestressing steel
For prestressing steel, a modified Ramberg-Osgood formulation

is used as recommended by Collins and Mitchell [14]. The stress-
strain expression is as follows:

f p ¼ Epep Aþ 1� A

1þ Bep
� �10� �0:1

0
B@

1
CA � f pu ð27Þ

where Ep is the initial Young’s modulus of the steel, typically taken
as 200,000 MPa and fpu is the ultimate stress of the reinforcement.
Definitions of A and B, fitting parameters which describe the post-
yielding stiffness and yield stress respectively, are shown in Fig. 6.
In lieu of experimentally obtained values, Collins and Mitchell sug-
gest values of 0.025 and 118 for A and B respectively for low-
relaxation strand [14].

To account for the prestress in the steel, a strain difference Dep
is used to offset the strain in the prestressing steel from the strain
in the surrounding concrete:

ep ¼ ec þ Dep ð28Þ
where ec is the strain in the surrounding concrete.

2.4. Calculating stress resultants and obtaining torque-twist behaviour

Once the strains have been obtained over the cross section and
the stresses at each element been calculated, the section stress
resultants can be computed using the following formulas:

Nz ¼
Z

f zdAc þ
Z

f sdAs þ
Z

f pdAp ð29Þ
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Vy ¼
Z
vzydAc ð30Þ
Vx ¼
Z
vzxdAc ð31Þ
Mx ¼
Z

y� ycenð Þf zdAc þ
Z

y� ycenð Þf sdAs þ
Z

y� ycenð Þf pdAp

ð32Þ
My ¼
Z

x� xcenð Þf zdAc þ
Z

x� xcenð Þf sdAs þ
Z

x� xcenð Þf pdAp

ð33Þ
Tz ¼
Z

x� xoð Þvzy � y� yoð Þvzx
� �

dAc ð34Þ

where (xcen, ycen) are the coordinates of the section centroid, (xo, yo)
are the coordinates of the shear centre, Ac is the area of reinforced
concrete elements, As is the area of discrete longitudinal reinforce-
ment and Ap is the area of discrete prestressed steel reinforcement.
2.5. Model implementation for pure torsion

The proposed model has been implemented in a MATLAB script,
and is currently formulated to model the behaviour of solid and
hollow reinforced and prestressed concrete members with a rect-
angular cross section. Fig. 8 shows the general analysis procedure
for conducting an analysis in pure torsion. Completing the analysis
broadly involves defining analysis parameters and member prop-
erties followed by an incremental analysis with nested iteration
to satisfy equilibrium throughout the section.
Fig. 8. Program flowchart for conducting an analysis of a member in pure torsion.
To begin the analysis, the user first needs to define the dis-
cretization of the section, material properties, smearing of the
transverse reinforcement and the location of the longitudinal rein-
forcement. Convergence criteria are also needed to define the max-
imum acceptable error on Nz, Mx, and My which may occur while
conducting a torque-twist analysis. For the analyses performed,
tolerances of ±5 kN for axial load and ±5 kN m for the bending
moments were deemed to be acceptable, though these tolerances
may need to be reduced when modelling smaller members. Note
that convergence for Vy and Vy is not checked since the strain dis-
tributions associated with czy0 and czx0 are not defined and hence
not used.

Prior to beginning the sectional analysis of the reinforced con-
crete member, the shear strain distributions of czy and czx caused
by twist need to be obtained from an elastic analysis using the
method explained in Section 2.2.2. Once these distributions have
been calculated, the torque-twist behaviour is computed by speci-
fying the section twist, wz, and varying the proportion of the axial
strain, ez0, vertical curvature, /x, and lateral curvature, /y, to ensure
that the only non-zero stress resultant is the torsion, Tz. If the error
on Nz, Mx and My are larger than the allotted tolerances, new esti-
mates of ez0, /x and /y are made until convergence is attained.
Upon convergence, the load stage is deemed to be complete. The
twist is incremented and the process repeats.

On the element level, the principal strains (e1, e2, e3) are calcu-
lated using the set of strains (ez, czy, czx) from the sectional strains
and an estimate of the distortion strains (ex, ey, cxy). The concrete
and transverse reinforcement stresses are evaluated using the con-
stitutive relationships presented in Section 2.3 and then the ele-
ment stress vector (fx, fy, fz, vxy, vzy, vzx) and stiffness matrix [D]
are obtained. The distortion strains are then iteratively updated
in order to ensure that fx = fy = vxy = 0. Once this condition has been
met, the process is repeated for each element in the cross section,
after which the stresses are integrated to obtain the stress resul-
tants Nz, Mx, My and Tz using the equations in Section 2.4. Note that
treating the longitudinal reinforcement is analogous to working
with the triaxial concrete elements but is simpler as they only
carry a longitudinal stress fz as a function of ez.

Although the model converges quite quickly in both the
uncracked elastic stage and cracked elastic stages, a large amount
of iteration is needed during moments of predominantly nonlinear
behaviour (i.e. at the onset of cracking, when the reinforcement is
yielding or when the concrete is crushing). It was also found that
convergence on the axial load Nz is particularly sensitive to small
variations in the longitudinal strain distribution and strongly influ-
ences the rate of convergence during an analysis.
3. Model validation

The proposed model was validated against 115 tests in pure tor-
sion which were found in the literature, consisting of 108 rein-
forced concrete beams, 5 prestressed concrete beams and 2
reinforced concrete shell elements. Of the beams modelled, 23
were hollow with the remainder being solid. All members analyzed
were rectangular in cross section and represent a wide spectrum of
geometric and material configurations leading to different failure
modes. In this section, a summary of predictions of ultimate torque
is first presented, followed by a more thorough comparison of pre-
dicted and observed torque-twist behaviour for beams and shells
in Sections 3.1 and 3.2 respectively.

Table 1 summarizes the experimental programs investigated in
greater detail. Key parameters investigated by each series of exper-
iments include geometric aspects (i.e. hollow vs. solid members,
aspect ratio, size), quantity of longitudinal reinforcement, qlong,
quantity of transverse reinforcement, qtrans, concrete cylinder



Table 1
Description of experimental programs. All dimensions are noted in mm.

Investigator Description # Tests Investigator Description # Tests

Bernardo and Lopes
(2009)
[21]

High strength hollow reinforced
concrete beams with a square cross
section.

Size: 600 � 600
fc0 = 46.2–94.8 MPa
qlong = 0.28–2.41%
qtrans = 0.15–1.36%

16 Koutchoukali and
Belarbi (2001)
[25]

High strength solid reinforced concrete beams
with rectangular cross section.

Size: 203 � 305
fc0 = 39.6–93.9 MPa
qlong = 0.83–1.29%
qtrans = 0.92–1.42%

9

Bruun and Bentz
(2017)
[22]

Reinforced concrete shell elements
tested in pure torsion.

Size: 1626 � 1626 � 286
fc0 = 30.4 & 37.6 MPa
qlong = 2.95%
qtrans = 1.95%

2 Mardukhi and
Collins (1974)
[26]

Hollow prestressed concrete beams
investigating the interaction between torsion
and bending. One test done in pure torsion.

Size: 305 � 431
fc0 = 35.6 MPa
qlong = 1.51%
qtrans = 0.49%

1

Fang and Shiau (2004)
[23]

Solid rectangular reinforced concrete
beams. High strength (H-Series) and
normal strength (N-Series) concrete.

Size: 350 � 500
fc0 = 35.5–78.5 MPa
qlong = 0.69–1.95%
qtrans = 0.61–2.01%

16 Mitchell and
Collins (1978)
[27]

Solid and hollow reinforced and prestressed
concrete beams.

Size: Varied (360 � 430 typ.)
fc0 = 29.6–38.9 MPa
qlong = 0.35–3.88%
qtrans = 0.68–0.80%

6

Hsu (1968)
[24]

Comprehensive series of tests on
rectangular cross sections.

Size: Varied (254 � 381 typ.)
fc0 = 14.3–45.8 MPa
qlong = 0.40–3.16%
qtrans = 0.40–3.20%

53 Rasmussen and
Baker (1995)
[28]

High strength solid reinforced concrete beams
with rectangular cross section.

Size: 160 � 275
fc0 = 36.3–109.8 MPa
qlong = 3.47%
qtrans = 1.49%
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strength, f’c, and amount of prestress. Note the following defini-
tions of qlong and qtrans:

qlong ¼
As;long

Agross
ð35Þ

qtrans ¼
As;transph

Aouts
ð36Þ

where As,long is the total cross sectional area of longitudinal rein-
forcement, As,trans is the cross sectional area of one hoop of torsional
reinforcement, ph is the perimeter of the area enclosed by the cen-
treline of the torsional reinforcement, s is the spacing of torsional
reinforcement, Agross is the gross cross sectional area of the member
and Aout is the area enclosed by the outside perimeter of the mem-
ber’s cross section (i.e. for a solid rectangular section, Agross = Aout).
Although qlong is the conventional volumetric ratio of longitudinal
steel to concrete, qtrans is the volumetric ratio of transverse rein-
forcement to the volume enclosed by the outside dimensions of
the member, making it an appropriate metric for both solid and hol-
low members.

When performing the validation studies, each member’s cross
section was represented as a grid with approximately 1200–2000
elements across the cross section. When smearing the transverse
reinforcement into the reinforced concrete elements, the steel
was smeared from the outside surface of the member to the depth
of the stirrup, which typically took place over four to six layers of
elements. The steel was proportioned so that the area of steel
assigned when calculating q increased linearly from a minimum
in the elements in the outside layer to a maximum inside the layer
of elements located at the depth of the stirrup (i.e. if a stirrup with
cross sectional area of 100 mm2 was smeared over four layers of
elements, the area was distributed as 10 mm2 in the exterior layer
and increasing to 40 mm2 in the interior layer). Apart from the pro-
cess of selecting an appropriate discretization of the member and
smearing the transverse reinforcement accordingly, no additional
model calibration was done to get the presented results. The com-
plete torque-twist response was obtained for each member using
an analysis over of 250–300 load steps, taking a total of around
2–3 min each.

Table 2 contains a summary of results for each of the 115 spec-
imens modelled, including the experimentally observed ultimate
torque, Tult,Test, the ultimate torque as predicted by the proposed
model, Tult,Pred, and the ratio of the test value to the predicted value,
TTest/TPred. From the results, it can be seen that the model gives con-
sistently good predictions of peak torque, with an average test to
predicted ratio of 1.028 and a coefficient of variation of 13.30%.
The quality of predictions for each of the 8 experimental investiga-
tions is high, with the exception of the highly reinforced, high-
strength beams tested by Rasmussen and Baker which are gener-
ally overestimated by the model.

Fig. 9 shows the results shown in Table 2 plotted against con-
crete cylinder strength, aspect ratio, quantity of transverse rein-
forcement and quantity of longitudinal reinforcement. It can be
seen that predictions of ultimate torque are fairly independent of
quantity of longitudinal and transverse reinforcement, performing
well for both very low amounts of reinforcement (typically result-
ing in failure caused by yielding of the reinforcement) as well as
very large amounts of reinforcement (typically resulting in failure
caused by crushing of the concrete before yielding of the steel). The
model also performed well over a variety of aspect ratios, a param-
eter which strongly influences the distribution of shear stresses
caused by torsion, providing further validation for the method of
determining the shear strain distribution caused by torsion previ-
ously described in Section 2.2.2. With regards to the effect of con-
crete strength on the predictions, the model appears to work well
for both normal and high strength concrete. But as noted earlier,
the relatively poor results for the tests by Rasmussen and Baker
contribute to the poor predictions for specimens whose concrete
strength is over 100 MPa.

The model also works equally well for both hollow and solid
sections, which is not evident from Fig. 9. Considering the 23 hol-
low beams tested by Bernardo and Lopes (16), Hsu (4), Mardukhi
and Collins (1) and Mitchell and Collins (2), the average test/pred
ratio is 1.029 and a coefficient of variation of 9.60%.



Table 2
Summary of analysis results.

Investigator Specimen Tult,Test
[kNm]

Tult,Pred
[kNm]

TTest/TPred Investigator Specimen Tult,Test
[kNm]

Tult,Pred
[kNm]

TTest/TPred

Bernardo and Lopes (2009) A-48.4-0.37 150.78 125.4 1.203 Hsu (1968) (con’t) I2 36.0 33.3 1.083
A-47.3-0.76 254.77 236.6 1.077 I3 45.6 46.3 0.985
A-46.2-1.00 299.91 280.8 1.068 I4 58.1 54.8 1.059
A-54.8-1.31 368.22 356.1 1.034 I5 70.7 65.8 1.075
A-53.1-1.68 412.24 388.7 1.061 I6 76.7 72.4 1.060
B-75.6-0.30 115.95 97.3 1.192 J1 21.5 20.2 1.063
B-69.8-0.80 273.28 251.8 1.085 J2 29.2 24.7 1.178
B-77.8-1.33 355.85 413.0 0.862 J3 35.3 30.3 1.165
B-79.8-1.78 437.85 445.4 0.983 J4 40.7 33.2 1.226
B-76.4-2.20 456.19 462.4 0.986 G1 26.8 21.4 1.250
C-91.7-0.37 151.76 120.2 1.263 G2 40.3 34.0 1.186
C-94.8-0.76 266.14 238.7 1.115 G3 49.6 49.4 1.005
C-91.6-1.29 351.16 416.1 0.844 G4 64.9 62.4 1.040
C-91.4-1.71 450.31 469.0 0.960 G5 72.0 70.5 1.021
C-96.7-2.07 467.26 516.9 0.904 G6 39.1 33.4 1.171
C-87.5-2.68 521.33 543.9 0.959 G7 52.7 51.1 1.031

Bruun and Bentz (2017) ES1 132.40 132.7 0.998 G8 73.4 65.9 1.114
ES2 177.10 180.2 0.983 N1 9.1 7.5 1.208

Fang and Shiau (2004) H-06-06 92.0 89.1 1.033 N1a 9.0 7.5 1.204
H-06-12 115.1 109.7 1.050 N2 14.5 12.5 1.154
H-12-12 155.3 146.3 1.062 N2a 13.2 12.3 1.075
H-12-16 196.0 163.7 1.198 N3 12.2 10.9 1.124
H-20-20 239.0 202.3 1.181 N4 15.7 13.4 1.173
H-07-10 126.7 111.6 1.135 Koutchoukali and Belarbi (2001) B5UR1 19.4 20.2 0.961
H-14-10 135.2 139.6 0.969 B7UR1 18.9 19.9 0.952
H-07-16 144.5 122.5 1.179 B9UR1 21.1 20.6 1.025
N-06-06 79.7 68.4 1.166 B12UR1 19.4 21.2 0.916
N-06-12 95.2 74.4 1.280 B14UR1 21.0 19.8 1.060
N-12-12 116.8 99.3 1.177 B12UR2 18.4 21.6 0.854
N-12-16 138.0 112.1 1.231 B12UR3 22.5 24.8 0.906
N-20-20 158.0 125.7 1.257 B12UR4 23.7 27.7 0.856
N-07-10 111.7 87.3 1.279 B12UR5 24.0 38.0 0.631
N-14-10 125.0 103.6 1.206 B5UR1 19.4 20.2 0.961
N-07-16 117.3 95.4 1.230 Mardukhi and Collins (1974) TB4 64.8 64.1 1.011

Hsu (1968) B1 22.3 20.5 1.086
B2 29.3 29.4 0.997 Mitchell and Collins (1978) P1 81.9 80.3 1.020
B3 37.5 37.1 1.010 P2 80.8 82.0 0.985
B4 47.3 44.0 1.075 P3 53.1 53.0 1.002
B5 56.2 56.4 0.995 P5 112.4 115.5 0.973
B6 61.7 60.5 1.020 P6 89.3 89.7 0.996
B7 26.9 28.4 0.948 PT4 65.4 64.0 1.022
B8 32.5 32.8 0.991 Rasmussen and Baker (1995) B30.1 16.62 19.2 0.864
B9 29.8 30.1 0.990 B30.2 15.29 18.2 0.842
B10 34.3 34.7 0.989 B30.3 15.25 17.5 0.870
D1 22.4 21.5 1.042 B50.1 19.95 24.6 0.811
D2 27.7 28.4 0.973 B50.2 18.46 23.5 0.787
D3 39.1 38.9 1.004 B50.3 19.13 24.6 0.779
D4 47.9 45.9 1.044 B70.1 20.06 28.3 0.709
M1 30.4 29.5 1.032 B70.2 20.74 28.1 0.738
M2 40.6 38.4 1.057 B70.3 20.96 26.0 0.806
M3 43.8 43.0 1.019 B110.1 24.72 35.3 0.701
M4 49.6 49.1 1.011 B110.2 23.62 34.5 0.685
M5 55.7 55.4 1.005 B110.3 24.77 34.5 0.718
M6 60.1 60.5 0.993

Mean Test/Pred 1.028
Coefficient of Variation 13.30%
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3.1. Comparison of predicted torque-twist response with experimental
data for beams

To validate the ability of the proposed model to capture the
complete torque-twist behaviour of a reinforced concrete member
in pure torsion, the predicted torque-twist response was compared
with experimental data obtained by the P-series tested by Mitchell
and Collins. The predicted and observed behaviour of four repre-
sentative specimens, P1, P2, P3 and P6 are shown in Fig. 10. These
selected specimens represent instances where the torsional beha-
viour is governed by several different factors: prestressing (P1,
P2, P3), the presence of a hole in the cross section (P2), crushing
of the concrete following yield of the transverse reinforcement
(P6), and crushing of the concrete following yielding of both direc-
tions of reinforcement (P1, P2, P3).

For all four plots in Fig. 10, there is excellent agreement regard-
ing the uncracked stiffness, gradual loss in stiffness following
yielding and ultimate torque. Even P6, which has a softer predicted
response than experimentally observed has a similar post-yielding
tangent stiffness as the experiment, albeit occurring at a larger
twist. The model was able to capture the response of both P1
and P2 (P2 being a hollow version of P1), and even captured the
small increase in torsional strength due to the slightly larger
amount of prestress. The simultaneous yielding of the transverse



Fig. 9. Summary of results for specimens modelled, plotted against concrete strength, f0c (top left), aspect ratio (top right), quantity of transverse reinforcement qtrans (bottom
left) and quantity of longitudinal reinforcement qlong (bottom right).
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and longitudinal steel in P3 was also well-captured by the model,
and the post-yielding behaviour exhibited excellent agreement
with the experimental observations.

The choice of constitutive modelling, particularly the assump-
tion of no tensile stresses in the cracked concrete, has resulted in
some discrepancies in the predictions and the experiments. The
model tends to consistently under-predict the cracking torque of
the members. The reason for this is because the small post-
cracking tensile stresses in plain concrete, as well as the more sig-
nificant post-cracking tensile stresses in reinforced concrete (ten-
sion softening and tension stiffening respectively) are ignored.
Although this is not inherently the fault of the proposed frame-
work, it does suggest that a more sophisticated model for tension
in concrete is needed to adequately predict the cracking torque
of a member.

Neglecting tension stiffening when modelling reinforced con-
crete beams also leads to a large discrepancy in the torque-twist
response shortly after cracking and can be seen in all four plots
shown in Fig. 10. The effect of neglecting tension stiffening is par-
ticularly noticeable for P6, a heavily reinforced beam with
qlong = 3.88% and qtrans = 0.68%. Although the cracking torque is
well-predicted by the model (Tcr,exp = 25.4 kN m and Tcr,pred =
26.6 kN m), the reduction in torsional stiffness was overestimated
to be a loss of 90%, compared to an experimentally observed reduc-
tion of about 60%, which is hardly noticeable in the torque-twist
plot in the figure.

The discrepancy caused by ignoring post-cracking tensile stress
in the concrete disappears following yielding of both the longitudi-
nal and transverse steel (like in P1, P2 and P3). When this occurs,
the tensile stresses in the concrete go to zero, as they are limited
by local behaviour of the steel yielding at the crack. In instances
such as P6, where only the transverse steel yields, the discrepancy
remained until the global behaviour was governed by crushing of
the concrete. Although neglecting tension stiffening leads to con-
servative estimates of the cracking torque and underpredicts the
post-cracking stiffness, the overall framework is still able to give
good results using the constitutive models discussed in this paper.
Further improvements to address the highlighted shortcomings
can be addressed by using different constitutive relationships for
post-cracking behaviour.

3.2. Comparison of predicted torque-twist response with experimental
data for shells

Two reinforced concrete shell elements tested by Bruun in 2017
were also used to validate the numerical model for shells [22].
These shell elements, measuring 1626 mm by 1626 mm and
285 mm thick, were tested in displacement control in pure torsion
using the Shell Element Tester at the University of Toronto. The ES
series represents the first set of shell tests to have been performed
in pure torsion and displacement control, and hence provide valu-
able peak and post-peak data to be used in this validation exercise.
These specimens were heavily reinforced diagonally and were
loaded in biaxial bending in-plane. As the longitudinal reinforce-
ment was rotated 45� to this axis, the applied moments resulted
in torsion on the specimens on a diagonal plane aligned with the
reinforcing steel. More details of the loading and observed beha-
viour can be found in Bruun and Bentz [22] and Bruun [29].

When modelling the specimens, a mesh similar to the one
shown in Fig. 3 was adopted, representing a diagonal slice through



Fig. 10. Comparison of predicted and observed torque-twist behaviour for specimens P1 (top left) and P2 (top right), P3 (bottom left) and P6 (bottom right).
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the shell. A 1 m strip was modelled, and the torque per unit length
of the strip was used to compare the predictions with the experi-
mental results. The validity of using a unit length and comparing
its response with that of a larger specimen, is confirmed by consid-
Fig. 11. Predicted and observed torque-twist behavi
ering the ratio of shear stresses of the long side to the short side
when performing an elastic analysis of a rectangle. For the
285 mm thick shell, a 1 m slice has an aspect ratio of 3.5 – elastic
theory states that the shear stresses along the long face are
our for ES1 (left) and ES2 (right) shell elements.
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approximately 5 times larger than those on the short face. This
ratio approaches infinity rapidly for larger aspect ratios, suggesting
that the torsional behaviour of a continuous shell is dominated by
the shear stresses carried along its faces, as opposed to those car-
Table 3
Model validation – Mardukhi prestressed concrete torsion and bending (TB) series.

No. Name Tult,test Mult,test

[kNm] [kNm]

1 TB1 62.4 73
2 TB2 53.2 157
3 TB3 27.8 193
4 TB4 64.8 0
5 TB5 0 237

Average
Coefficient of Variation

Fig. 12. Predicted and observed behaviour for combined bending and torsion. Torsion-b
and moment-curvature plots for beam TB3 (bottom right).
ried through the thickness. For modelling purposes, this means
that comparing the normalized torsion along the length of the long
face is an appropriate approach for modelling the torque-twist
response of larger shell structures.
Tult,pred Mult,pred Test/Pred
[kNm] [kNm]

63.1 74 0.989
56.3 165 0.945
28.7 199 0.969
64.1 0 1.011
0 239 0.992

0.981
2.29%

ending interaction for the Mardukhi’s TB series (top) and torque-twist (bottom left)
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Fig. 11 shows both the experimental and predicted torque-twist
response for shells ES1 and ES2, which were nominally identical
except ES2 contained T-headed reinforcement through the thick-
ness and had a slightly higher fc0. Excellent agreement can be seen
between the predicted and experimentally observed behaviour,
particularly the post-cracking stiffness, peak torque and ultimate
twist. Although there is a discrepancy between the predicted and
observed behaviour shortly after cracking due to tension stiffening
being neglected, the overall behaviour was well-captured because
failure was dominated by crushing of the concrete prior to yielding
of x- or z- direction reinforcement.
4. Extension to torsion and bending – preliminary validation

Although Section 2.2.2 mentions that the shear strain distribu-
tion caused by twist obtained from a linear elastic analysis of the
cross section does not stay the same in cases of combined torsion
and bending of cracked reinforced concrete members, preliminary
validation has shown that using the elastic shear strain distribu-
tion for a combined torsion-bending analysis still allows for good
predictions of torque-twist and moment-curvature response to
be made. A series of validation studies were conducted to see
how well this approach worked using the Marduhki series of sym-
metrically reinforced prestressed concrete beams subjected to
combined torsion and bending [26]. The results of this study are
shown in Table 3 and Fig. 12, where the torsion-bending interac-
tion is predicted with excellent accuracy, and good agreement is
obtained between the measured and predicted torque-twist and
moment-curvature behaviour.

When modelling these beams using the methodology outlined
in this paper, the use of the elastic shear strain distribution caused
by twist led to large unbalanced shear forces in the member during
the analysis. These unbalanced forces are due to the differences in
the distribution of stiffnesses in the member following flexural
cracking. For an uncracked rectangular member, the shear strain
distribution caused by twist is symmetric about both the x- and
y- axes. Following cracking however, the stiffnesses and hence
the distribution of shear strains is no longer symmetric about both
directions as the flexural tension side is cracked and the flexural
compression side may be uncracked. Applying the elastic shear
strain distribution to this system hence leads to a non-zero shear
force carried by the section in addition to the applied torsion and
moment. Despite this issue however, reasonable predictions of
strength, as well as torque-twist and moment-curvature response
were obtained by using the elastic shear strain distribution. Fur-
ther work is needed to model torsion in combination with bending
and shear to address this issue in a more rigorous manner.
5. Conclusions and areas of future work

In conclusion, a sectional analysis tool is presented for the non-
linear analysis of reinforced and prestressed concrete members
subjected to pure torsion. A key component of the methodology
is using the elastic shear strain distribution caused by twist to
obtain the complete torque-twist behaviour. The resulting model
is thus able to describe detailed sectional behaviour under torsion
in a computationally efficient manner, combining the strengths of
existing finite element and space-truss models available in the lit-
erature. Although the methodology has been implemented for
modelling pure torsion in rectangular cross sections using select
constitutive relationships for concrete and steel, the framework
is general enough to permit the use of any constitutive models
and be extended to account for any combinations of axial load,
shear, moment and torsion being carried by an arbitrarily-shaped
cross section.
A validation exercise using 115 specimens tested in pure torsion
found in the literature were modelled using the proposed analysis
method to evaluate its predictive ability. The average test to pre-
dicted ratio for ultimate torque was found to be 1.028, with a coef-
ficient of variation of 13.30%. Excellent predictions of both the peak
load and overall torque-twist behaviour of specimens were made,
both of which are important properties when considering Equilib-
rium Torsion and Compatibility Torsion in actual structures. Other
positive features of the model are its fast runtime compared to per-
forming a 3-D nonlinear finite element analysis and its limited cal-
ibration requirements, both of which enhance its practical appeal.

Areas of future work include the following:

� Validating the approach for arbitrarily shaped cross sections.
Although the shear strain distributions presented in Fig. 4 sug-
gest that the current approach can be extended to T-beams,
comparison with experiments in the literature are required to
validate this hypothesis.

� Obtaining a means to calculate the shear strain distributions for
czy0 and czx0 which are associated with the stress resultants Vy

and Vx respectively to have a complete set of strain distributions
for the six sectional strains.

� Expanding the capabilities of the model to account for combina-
tions of axial load, shears, moments and torsion. This primarily
involves developing a means to calculate the changes in warp-
ing as the member cracks under load.

� Improving the constitutive model for cracked reinforced con-
crete in tension. The current approach leads to underestimating
the stiffness following cracking and is less appropriate for mem-
bers containing very small amounts of transverse
reinforcement.

This work is a promising first step towards efficient sectional
analysis for members subject to torsion and further improvements
would provide engineers with a practical tool to model members
subjected to complex loading combinations and understand the
fundamental mechanisms which allow them to carry load.
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