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Abstract: This paper presents the derivation and validation of a mechanics-based finite element for the analysis of shear-critical slender
reinforced concrete beams and columns. The element can capture the load-deformation behavior associated with axial loads, bending
moments, and shear in uncracked or cracked reinforced concrete using only a small number of degrees of freedom and easily measurable
input parameters: the gross cross-section dimensions and steel and concrete material stress/strain curves. The element is specifically derived to
represent the full reinforced concrete cross section (i.e., one element is required over the depth of a member) and consists of four nodes, with
two translational degrees of freedom (DOFs) per node. This formulation facilitates modeling the interface regions between walls or joint
regions, beams, or columns and lowers the numerical complexity and number of decisions that the user must make. The element shows
improvements to results from design codes when validated against experimental results for 782 beams without shear reinforcement and
167 beams with shear reinforcement taken from the literature. By reducing the number of degrees of freedom, the element will allow relatively
rapid two-dimensional (2D) nonlinear analyses of full reinforced concrete buildings. DOI: 10.1061/(ASCE)ST.1943-541X.0003424.
© 2022 American Society of Civil Engineers.

Introduction

Over the last century, a great deal of progress has been made by
engineers and researchers in their attempts to understand and apply
the behavior of cracked concrete to structural design and assess-
ment. Analyses that undergraduates now consider easy to solve were
once considered much more challenging. In the 1908 Cyclopedia of
Civil Engineering, for example, the first sentence about reinforced
concrete states, “The theory of flexure in reinforced concrete is ex-
ceptionally complicated” (Turneaure 1908, p. 185). It is partly for
this reason that they also noted that for typical concrete with an ul-
timate compressive strength of 14 MPa (2,000 psi), the safety factor
should be taken as four and that significant simplifications are re-
quired to allow this new material to be used by designers safely.

In the first half of the ensuing century, new analytical methods
became available that improved the options for designers, such as
the revolutionary analysis method called moment distribution in
1930 (Cross 1930) and the introduction of the limit states concepts
in the 1950s, codified by American Concrete Institute (ACI) in 1963
(ACI 1963). The second half of the century saw important additions
to the understanding of shear and torsion, including compression
field theory (CFT) in 1974 (Mitchell and Collins 1974) and modi-
fied compression field theory (MCFT) in 1986 (Vecchio and Collins
1986), which was first implemented in a tangent stiffness form
(Adeghe 1986; Stevens 1987), and later in a secant stiffness form
into the finite-element method (FEM) by Vecchio (1989, 1990).

The second half of the twentieth century saw even more impres-
sive advances, however, in the potential and capability of digital

computers to solve systems of equations. Thus, the number of
simultaneous equations that could be solved in a specified time
increased by many orders of magnitude during this period.

What is, perhaps, surprising is that these two streams of tech-
nological progress of the twentieth century—the improved under-
standing of the nonlinear behavior of structural concrete and the
improvement in computational power—have not fully cross-
fertilized in engineering practice. Thus, although engineers use
much more powerful computers today than they did in 1990, the
structural analyses that these computers are performing today
would be familiar to Hardy Cross, the developer of moment
distribution in 1930 (Cross 1930).

One potential reason for this separation is that many practicing
engineers are hesitant about the use of nonlinear finite-element
analysis because there is not yet a consensus on best models or
techniques. Most codes, therefore, only allow linear analysis to de-
termine sectional demands in structures. Often, the concern can be
traced back to the perception that an engineer can get whatever
result they desire from some nonlinear finite-element programs by
adjusting input parameters or changing meshes. This was demon-
strated in the 2015 prediction contest that preceded the testing of
a shear experiment 4,000 mm (13 ft) deep at the University of
Toronto because the quality of predictions received before the test
was generally poor (Collins et al. 2015). A general pattern in the
results was that the more degrees of freedom (DOFs) in the analy-
sis, the worse the overall predictions, although some poor results
were obtained with a small number of degrees of freedom as well.

This paper presents an attempt to make a stronger connection
between computer power and practical nonlinear analysis of
concrete structures for the 21st century. To avoid the problem of
“getting whatever results are desired,” the method will only include
input parameters that are easily measured or defined, such as geom-
etry and material properties, and will use a sharply reduced number
of DOFs. This results in a more constrained framework for model-
ing the behavior of shear-critical reinforced concrete structures,
one that is less reliant on the experience level of the user to use
correctly as in traditional nonlinear finite-element analysis
(Vecchio 2001). The method as presented will allow analysis of
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two-dimensional (2D) beams, columns, and frame elements sub-
jected to axial load, moment, and shear. In this paper, the analytical
basis and implementation of the model will be shown as applied to
the behavior of slender (i.e., relatively long) shear-critical rein-
forced concrete members. Modeling this type of condition is im-
portant because when members fail in shear, they do so in a
brittle manner and have little residual capacity.

Basis of Analytical Method

Conventional 2D frame analysis is usually performed using the
stiffness method with one-dimensional (1D) elements having three
DOFs (Δx, Δy, and θ) at each end. This works well but has some
limitations that the method in this paper will relax. First, the use of a
rotational DOF produces an incompatibility in a planar analysis
between beams framing into a wall—typically modeled with ele-
ments that use two DOFs per node. Although walls may also be
represented with frame elements, the challenge then becomes to
determine an appropriate nonlinear stiffness when distributed
cracking or yielding is expected in the walls at serviceability or
ultimate limit states.

A second constraint to using 1D elements is that part of the joint
region between beams and columns is modeled as flexible rather
than as part of the joint region. This can be rectified by using rigid
offsets, but these merely suppress the deformations in the joint
region, which may behave differently from simply being rigid.
In cases where the joint regions are critical, special element types
or methods are required to model them accurately (Birely et al.
2012).

A third limitation is one of convenience: the centerline dimen-
sions used in the geometry of 1D models do not match the overall
concrete geometry of the structure because the elements are defined
at the elastic neutral axis of the members. A frame that is 10 m wide

out-to-out might be modeled as 9.5 m on centers once the geometry
of the supporting columns is accounted for; this situation can in-
troduce modeling errors.

To respond to these limitations, the novel element defined in this
paper will be based on the gross concrete geometry of the member.
Thus a 10-m span out-to-out will be 10 m long in the model as well.
Joint regions can be modeled as their own 2D finite elements with
their own constitutive relationships as required. However, this
paper will focus on the beam/column elements rather than the joint
regions.

Fig. 1(a) shows the use of this new element to model a simply-
supported reinforced concrete beam. In Fig. 1(b) there are four
nodes for each element, with two DOFs per node, or eight DOFs
versus six in a conventional 1D frame element. Also, like a 1D
element, this new element has a built-in direction to it: the horizon-
tal axis is the longitudinal axis of the member, and the vertical di-
rection is the beam transverse direction. The element is unlike
conventional 2D bilinear finite elements, which work the same
way if rotated 90°.

The element has been formulated to explicitly represent a gross
concrete cross section, where each element can be thought of as a
segment of the member being modeled. To satisfy internal equilib-
rium, distributed internal stresses can only occur on the left and
right faces of the element (between Nodes 1 and 2 and between
Nodes 3 and 4, respectively). It follows that internal stresses cannot
occur on the top or bottom faces of the element (between Nodes 2
and 4 and between Nodes 1 and 3, respectively) because these
represent the external faces of the beam.

Fig. 1(c) shows that this element type can accommodate the
deformations associated with axial load (N), moment (M), and
shear (V). Axial tension will occur with all four horizontal nodal
forces pointing outward from the element. Moment is resisted by
horizontal nodal forces of opposite signs on the top and bottom of

Fig. 1. Use of the novel element presented in this paper: (a) a reinforced concrete beam is represented by a string of elements; (b) each element has
eight DOFs; and (c) positive axial, flexure, and shear sign convention.
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the member. Shear forces are associated with vertical forces on
the sides.

From the definition of the element (summarized in Fig. 1) the
following statements can be made:
• Plane sections prior to deformation will remain plane after

deformation because the element sides are straight lines.
• Each element must have constant depth because moments will

result only from horizontal forces.
• Axial loads will be distributed equally to the top and bottom

nodes, making the notional axis of axial load the middle of the
gross depth.

• Longitudinal strains are constant along the longitudinal length
(dx) of the element, which means that the elements can be con-
sidered constant-moment elements in a sense. Multiple elements
along the length of the member [e.g., Fig. 1(a)] will therefore be
required to account for moment gradients.

• The shear stresses on the left and right faces will be assumed
constant, which means that shear forces are distributed equally
to the top and bottom nodes.
A conventional finite element with only four nodes and eight

DOFs (i.e., using bilinear interpolation) would result in unaccept-
able overestimates of stiffness coming from the prediction of spu-
rious shear stresses due to shear locking. At least a cubic order of
interpolation functions is recommended to avoid locking, which
would result in a 16-node quadrilateral element (Bathe 2014,
p. 424). Yet even such an element would not necessarily be able
to capture the complex behavior in reinforced concrete members.
Therefore, to avoid these issues while remaining computationally
simple, the element derived in this paper has been purposely for-
mulated for use in cracked reinforced concrete analysis and does
not use conventional finite-element interpolation functions. Instead,
the shear stiffness will be decoupled from the flexure and axial-
load stiffness, which allows the computational complexity of the
element to remain low (four nodes and eight DOFs) while still pro-
ducing accurate results.

In concept, this is a similar approximation made by shear design
methods used in the Canadian Standards Association (CSA) code
(CSA 2019) or AASHTO load and resistance factor design (LRFD)
(AASHTO 2020) bridge design specifications, where a longitudi-
nal strain, εx, calculated from the sectional forces is an input into
the shear design equation. To define the overall stiffness matrix for
this element, it will be necessary to first define the flexural and
shear behavior, and then to combine the separate parts to produce
the element.

The paper will first go through the formulation and derivation of
the element, followed by a validation study against
• two large slender reinforced concrete experiments for mesh

dependency evaluation, and
• the ACI shear-critical slender reinforced concrete beam exper-

imental database (DAfStb) (Reineck et al. 2013, 2014).

Constitutive Relations

In terms of flexure and axial load, the analysis is based on a conven-
tional strain compatibility approach assuming that plane sections
remain plane. This portion of the analysis is therefore a conventional
fiber model based on uniaxial behavior in the longitudinal direction.
Any appropriate material model may be used for this analysis.

The model for shear assumes constant shear stress within the
element with a stress that is consistent with the strain state at the
centroid of the element. Two-dimensional shear behavior requires
three relations to be defined, for example, three strains to form a
Mohr’s circle of strain, which can then be converted into stresses

via a 2D general model of cracked concrete shear behavior. In the
element introduced in this paper, the horizontal strain (εx) is taken
from the flexural strain profile at midheight, which is itself derived
from the nodal displacements. The nodal deformations are also
used to determine a shear strain (γxy) as a second condition.

For the third condition required to fully define the 2D shear
behavior, rather than using the vertical sides of the element to cal-
culate an average vertical strain, a zero transverse clamping stress
condition is instead applied (fy ¼ 0). Thus, the vertical component
of the diagonal compression stress must be balanced by vertical
components of average principal tensile stress in the cracked con-
crete plus stirrup forces, if any. This means that the transverse
behavior is governed by a stress constraint rather than a displace-
ment constraint. This has the advantage that it removes any sensi-
tivity to the low quality of vertical discretization over the depth of
the member. For cases where the clamping stress is known to be
nonzero, perhaps near point loads, this can also be accounted for
(Acevedo et al. 2009; Uzel 2003), but this topic will not be explored
in this paper.

Applying the three conditions for shear defined in the preceding
paragraphs (εx, fy, and γxy) to any suitable 2D general cracked re-
inforced concrete shear analysis method can provide the relation-
ships between stress and strain for these inputs. In the current paper,
Vecchio and Collins’s (1986) MCFT is used. Fig. 2 shows the equa-
tions that define the theory and will be used to stay compatible with
the design codes [i.e., CSA (2019) and AASHTO (2020)] that also
use this method for shear design.

Thus, the method described in this paper is consistent with the
intentions of a number of codes at least in terms of shear, and can
also be made so in terms of flexure and axial load. To apply the
shear conditions for a given element shape, the two strains, εx and
γxy, are determined from the nodal deformations, and then an iter-
ative loop is run where the transverse strain required to achieve a
zero net clamping stress is determined. At this point, the interaction
terms are neglected, and the equation vxy ¼ Ḡ · γxy is used to de-
termine an updated secant value of the shear modulus Ḡ, which will
be used in the definition of the portions of the stiffness matrix that
result from shear.

Stiffness Matrix Definition

The following subsections will describe the process of deriving the
stiffness matrix for the element, which is made up of three com-
ponents: flexure and axial loads ½K1�, shear forces ½K2�, and terms
to account for the additional demands on longitudinal reinforce-
ment resulting from the web being potentially diagonally cracked
½K3�. The final matrix for the element in local coordinates will be
defined as the sum of the three submatrices

½ ½K1� þ ½K2� þ ½K3� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

fΔx1

Δy1

Δx2

Δy2

Δx3

Δy3

Δx4

Δy4g

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Fx1

Fy1

Fx2

Fy2

Fx3

Fy3

Fx4

Fy4

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

þ ½FEF� ð1Þ

where the nodal deformations and forces are shown in Fig. 1(b).
The vector ½FEF� represents fixed end forces for self-straining
problems as with conventional 1D frame analysis.

© ASCE 04022142-3 J. Struct. Eng.
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Flexure and Axial Loads

The stiffness method used for the proposed element is based on
a secant stiffness approach as recommended by Vecchio and im-
plemented in the VecTor2 2D finite-element analysis program
(Vecchio 1990). Starting with a set of nodal displacements, top and
bottom average strains are determined as εtop ¼ ðΔx4 −Δx2Þ=dx
and εbot ¼ ðΔx3 −Δx1Þ=dx, and at other elevations the strains vary
linearly. Fig. 3 shows these strains.

These strains are then applied at multiple layers in the section
to determine the uniaxial stress at each layer of concrete or steel
using a conventional strain compatibility or fiber model approach,
as shown in Fig. 4.

From the concrete and steel reinforcement stresses over the depth
[Fig. 4(a)], a secant stiffness is determined at each layer [Fig. 4(b)].
Thus, the longitudinal secant stiffness for concrete is taken as Ēc;i ¼
fc;i=εc;i at each given layer i, where fc;i is the calculated concrete
stress and εc;i is the longitudinal strain in this layer. For cases where

εc;i is close to zero, the initial uncracked tangent stiffness of the con-
crete, Ec, should be used for Ēc. When using tension stiffening re-
lationships for average concrete tensile stresses on the tension side,
there must also be a crack check to ensure average tensile stresses
can be carried across any flexural crack if flexural yield is possible.
Because this paper is about shear failures, this will not be discussed
in detail here, but has been discussed by Bentz (2000b).

Converting the longitudinal secant stress stiffness distribution,
Ē, to entries in a stiffness matrix requires deriving a relationship
between force and displacement at each node. Recall the definition
of stiffness as it applies to the stiffness method: force per unit
displacement. Thus Kij is the term in the stiffness matrix that cor-
responds to the force at DOF i resulting from a unit displacement at
DOF j while keeping all other displacements at zero. Column j of
the stiffness matrix can be thought of as the reaction forces required
in all DOFs to keep the free-body diagram in equilibrium as a
response to a unit deformation in the jth DOF.

Fig 3. Flexure is represented by the relative deformation of the top and bottom nodes in the element.

Fig. 2. Equations of the Modified Compression Field Theory (MCFT).

© ASCE 04022142-4 J. Struct. Eng.
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An incremental unit displacement is applied at DOF 1 (i.e., u1 ¼
1) while keeping the deformations of all other nodes constant, re-
sults in a linear increment to the current sectional strain profile
(dεbot in Fig. 5). This is a fictitious additional displacement that
is only applied at DOF 1 (and zero elsewhere), with the pre-existing
strain profile coming from previously calculated nodal displace-
ments. For example, in Fig. 5, this pre-existing condition is shown
as compression at the bottom and tension at the top. This method
allows the evaluation of the flexural/axial stiffness terms in its cur-
rent deformed state. FB and FT in Fig. 5 are changes to the existing
nodal forces as a result of this fictitious additional displacement.
These forces are then used to determine the stiffness terms, KB
and KTB, in Eq. (2), which will be used in the stiffness matrix
[K1]. KTB can be thought of as a cross-stiffness term, meaning that
an action that occurs at the bottom of the section will have an

influence on the top (and vice versa for KBT), which is an intuitive
result for a solid body

KB ¼ ΔFx1

u1
¼ FB

dεbot · dx

KTB ¼ ΔFx2

u1
¼ FT

dεbot · dx
ð2Þ

The total axial force in the cross section as a result of this
displacement increment is calculated as the product of the secant
stiffness and the resulting strain increment, which varies linearly
with depth, integrated over the full cross-section area [Eq. (3)]

F ¼
Z
A
Ēε · dA ¼

Z
h

0

Ē · dεbot
h − y
h

· b · dy

¼ dεbot
h

Z
h

0

Ē · ðh − yÞ · b · dy ð3Þ

For practical purposes, this calculation can also be discretized
by representing the cross section as a collection of constant-strain
layers. But if the discretization is too coarse, instabilities related to
cracking of concrete can arise (Bentz 2000b).

The equivalent nodal force is then found through moment equi-
librium in the section, as shown in Eq. (4). For example, the force in
the bottom node should have the same moment about the top node
as the sum of the force components in the section (and vice versa
for the force in the top node)

Fig. 4. (a) Reinforced concrete cross-section as a series of layers, also known as a fiber model, where each layer of the cross-section is represented
using a secant stiffness for concrete and steel; and (b) each layer of the cross section is represented using a secant stiffness for concrete and steel.

Fig. 5. Incremental change in horizontal forces at all nodes as a result
of a unit displacement in DOF 1 (i.e., u1 ¼ 1).

© ASCE 04022142-5 J. Struct. Eng.
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FB · h ¼ MT ¼ dεbot
h

Z
h

0

Ē · ðh − yÞ2 · b · dy

FT · h ¼ MB ¼ dεbot
h

Z
h

0

Ē · ðh − yÞy · b · dy ð4Þ

Substituting Eq. (4) into Eq. (2) results in the following equa-
tions for the stiffnesses:

KB ¼ 1

dx · h2

Z
h

0

Ē · ðh − yÞ2 · b · dy

KTB ¼ 1

dx · h2

Z
h

0

Ē · ðh − yÞy · b · dy ð5Þ

Performing the same set of calculations—with a displacement at
Node 2 instead—would produce the same values for KBT as KTB.
The value of KT , which represents the relationship between the
force FT and Δx2, is the following:

KT ¼ 1

dx · h2

Z
h

0

Ē · y2 · b · dy ð6Þ

To summarize, these calculations show that bottom areas of the
cross section contribute more to the stiffness of the bottom DOFs
and vice versa [i.e., ðh − yÞ2 and y2 scaling for KB and KT , respec-
tively]. On the other hand, the KBT and KTB cross-stiffness terms
represent the inherent connectivity in a concrete cross section: any
single region, for example the bottom, will contribute to the stiff-
ness throughout the whole cross section.

The contribution of steel reinforcement to the flexural and axial
stiffness terms (KB, KT , KBT , and KTB) is calculated using the
discrete forms of Eqs. (5) and (6): summing the areas of the bars
multiplied by the secant steel stiffness, Ēs, and depth, ds, in the
cross section.

In addition to the horizontal-direction stiffness terms, a stiffness
is also required to restrain the relative value of vertical displace-
ments of the top and bottom nodes. Because a stress condition is
used in the shear model rather than strains based on nodal defor-
mations, the vertical stiffness terms need not be detailed. To provide
an appropriate stiffness for the behavior of a beam embedded
within a wall carrying vertical compression, the following relation-
ship is recommended forKv, where Ec is taken as the initial tangent
stiffness of the concrete multiplied by the tributary area of the
element (i.e., half the width):

Kv ¼ Ec
b · dx
2h

ð7Þ

Combining these terms produces the ½K1� matrix [Eq. (8)],
which represents the axial/flexural stiffness of the element. From
the derivation, it follows that this matrix is symmetric and that a

force on one face of the element is mirrored on the other face to
maintain equilibrium

½K1� ¼

2
6666666666666664

KB 0 KBT 0 −KB 0 −KBT 0

0 KV 0 −KV 0 0 0 0

KTB 0 KT 0 −KTB 0 −KT 0

0 −KV 0 KV 0 0 0 0

−KB 0 −KBT 0 KB 0 KBT 0

0 0 0 0 0 KV 0 −KV

−KTB 0 −KT 0 KTB 0 KT 0

0 0 0 0 0 −KV 0 KV

3
7777777777777775

ð8Þ

The initial value of this matrix for a new analysis can be derived
from the initial uncracked state, where Ēc is taken as Ec for all
depths. Using this matrix, the new strain state for a target load or
deformation can be determined. This will then require re-evaluation
of the stiffness terms in an iterative solution. Convergence is ob-
tained when each of the the KT , KB, and KTB values for each
element are sufficiently close from one iteration to the next. For
efficient solutions, it is useful to solve the entire multielement
finite-element model at a time and check the convergence ratios
afterward, taking the worst convergence of any element as the
measure of overall convergence. By itself, however, matrix ½K1�
is singular because there is not yet any shear stiffness in the model.

Shear Forces

A similar process to that used in the preceding section will be fol-
lowed for shear: (1) the strain state is determined from the nodal
deformations, (2) the secant shear stiffness is evaluated using an
MCFT formulation, and (3) a shear stiffness matrix is populated.
This matrix, ½K2�, is then added to the flexure and axial stiffness
matrix ½K1�.

The shear stress in the element is assumed to be constant, mean-
ing that under shear alone, the rectangular element will deform into
a parallelogram as shown in Fig. 1(c). The shear stress will be as-
sumed to only be carried by the member web width, bw, and the
effect of any flanges (as in a T-section) on shear will be neglected,
as is typical for design codes.

Shear strains are a component of the total deformation of the
element. It is therefore necessary to isolate the shear strains from
an arbitrary displaced shape. Consider building up the components
of vertical deformation at Node 3 as shown in Fig. 6.

Taking Node 1 as the origin, consider that a rigid-body rota-
tion [Fig. 6(b)] will be associated with a horizontal deformation
at Node 2 of Δx2 −Δx1, and a vertical displacement at Nodes 3

Fig. 6. (a) Undeformed; (b) rotation; (c) flexure; and (d) shear deformations used to represent (e) relative vertical displacements of the element.

© ASCE 04022142-6 J. Struct. Eng.
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and 4 of θL · dx, where θL is member rotation at the left side of the
element [Eq. (9)]

θL ¼ Δx2 −Δx1

h
ð9Þ

In addition to rigid-body rotation, and independently, the mem-
ber may also show curvatures due to moments. These are defined as
the gradient in longitudinal strain with depth [Eq. (10)]

ϕ ¼ εbot − εtop
h

¼ ðΔx3 −Δx1Þ − ðΔx4 −Δx2Þ
h · dx

ð10Þ

The influence of a constant curvature on the vertical displace-
ment at Node 3 can be found from the second-moment area theo-
rem as (ϕ · dx · dx=2).

Uniform horizontal displacements at Nodes 3 and 4 (axial loads)
will not be associated with vertical deformations at Node 3, but
shear strains will be. Thus, any shear strain within the element will
produce a vertical deformation at Node 3 due to shear of γxy · dx as
shown in Fig. 6(d).

Combining these components together and accounting for the
deformation of Node 1 [Fig. 6(e)] means the modeled change in
y displacement, Δy3 −Δy1, must equal the sum of the aforemen-
tioned components. Using the average vertical displacements of
both nodes at each side results in Eq. (11)

Δy3 þΔy4

2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Avg:Right

−Δy1 þΔy2

2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Avg:Left

¼ θL · dx|fflfflffl{zfflfflffl}
Rotation

þ ϕdx ·
dx
2|fflfflfflffl{zfflfflfflffl}

Curvature

þ γxy · dx|fflfflffl{zfflfflffl}
Shear

ð11Þ

Solving for γxy in Eq. (11) results in Eq. (12) for shear strain
given arbitrary nodal displacements. Eq. (12) is also produced as
the sum of shear strains at the centroid of the element produced by
changing each DOF in turn

γxy ¼ −Δx1

2h
−Δy1

2dx
þΔx2

2h
−Δy2

2dx
−Δx3

2h
þΔy3

2dx
þΔx4

2h
þΔy4

2dx
ð12Þ

This shear strain, along with the longitudinal strain at middepth,
εx, from the flexural calculations is used in the following constit-
utive relationship for shear:2

664
k11 k12 k13

k21 k22 þ ks k23

k31 k32 k33

3
775
8><
>:

εx

εy

γxy

9>=
>; ¼

8><
>:

fcx

0

vxy

9>=
>; ð13Þ

where ks = stiffness of the stirrup steel (product of secant stiffness
of steel and stirrup percentage). This matrix is the secant shear stiff-
ness matrix of cracked concrete, with the definition and solution
technique described by Vecchio (1990). In solving for the unknown
transverse strain, εy, the zero clamping stress condition is applied,
as shown in the right side of Eq. (14). Thus, the following ex-
pression must be solved for the value of the unknown transverse
strain, εy:

k21 · εx þ ðk22 þ ksÞ · εy þ k23 · γxy ¼ 0 ð14Þ

Although only one strain is changing in this calculation, the
stiffness matrix terms depend on this strain via changes in the angle
of principal compression θ, stirrup stress, and the corresponding
secant stiffnesses, Ēc2 and Ēc1 [principal compression and tension,
respectively (Vecchio 1990)]. Thus, the solution of this equation
must be iterative because new values of εy will update the secant
stiffnesses, and therefore, the k21, k22, and k23 values seen in

Eq. (14). The value of εy will be converged when the two secant
stiffnesses (Ēc1 and Ēc2) have stabilized from one iteration to
the next.

This converged strain state should be solved for each time the
stiffness matrix of an element is required because the converged
results in Eq. (13) are needed to generate the ½K2� and ½K3�matrices.
The calculated εy is the appropriate value to use when consider-
ing the transverse strain in the member, and the vertical deforma-
tion of the nodes should not be used in evaluating the vertical
strains. Instead of using the MCFT formulation for the element
as outlined in this section, the shear stiffness of cracked reinforced
concrete can be determined based on other existing constitutive
models (Vecchio et al. 2001; Maekawa et al. 2003; Kaufmann
and Marti 1998).

With the strain state solved for, the converged shear stress and
strain values can be related through the secant shear stiffness (Ḡ)

vxy ¼ Ḡ · γxy ð15Þ

This value of Ḡ will be used in the generation of the stiffness
matrix ½K2�. The right side of Eq. (13) shows in the top row, a value
of fcx that is also generated by this shear analysis. This represents
the longitudinal components of concrete compression and tension
stiffening that are required to hold the element to the given strain
state with zero clamping. This interaction term between shear and
longitudinal forces is important after diagonal cracking and will be
further discussed in the section “Impact of Diagonal Cracking” as
the basis for matrix ½K3�.

Substituting the shear strain [Eq. (12)] into Eq. (15) results in
an expression for shear stress in terms of nodal displacements
and the secant shear stiffness. Fig. 7 shows the conversion from
applied shear stress to nodal forces based on the assumption of con-
stant shear stress in the element.

To be consistent with observed behavior and codes, a final cor-
rection must be made before generating the stiffness matrix ½K2�.
The definition of shear stresses in Fig. 7 shows that the stress is
applied over the full depth of the member, h, and this is not con-
sistent with the behavior of cracked reinforced concrete (Collins
and Mitchell 1997). To a first approximation, shear is carried in
reinforced concrete member over a shear depth, dv, which is de-
fined as the distance between the centroid of flexural compressive
forces and the centroid of flexural tensile forces.

The value of dv used with this element will be taken from codes
(CSA 2019; AASHTO 2020) as dv ¼ 0.9d where d is the effective
depth of the member to the tensile reinforcement but need not be
taken as less than 0.72h. To account for this, the shear stiffness
from the constitutive model must be converted from the shear
depth, dv, to the full member depth, h, while keeping the moment

Fig. 7. (a) Positive shear stress on an element; and (b) resulting nodal
forces in terms of shear stress.
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on the section the same (F · dv ¼ Fx · h as shown in Fig. 8).
In practice, this means that when using the shear stiffness to gen-
erate the stiffness matrix ½K2�, the value of Ḡ must be multiplied by
the ratio of dv=h.

Putting all these pieces together leads to the ½K2� matrix, which
relates shear deformations to nodal forces and therefore represents
the shear stiffness of the element

½K2�¼
Ḡbwdv
4h

·

2
66666666666666666666666666666666664

dx
h

1 −dx
h

1
dx
h

−1 −dx
h

−1

1
h
dx

−1 h
dx

1 − h
dx

−1 − h
dx

−dx
h

−1 dx
h

−1 −dx
h

1
dx
h

1

1
h
dx

−1 h
dx

1 − h
dx

−1 − h
dx

dx
h

1 −dx
h

1
dx
h

−1 −dx
h

−1

−1 − h
dx

1 − h
dx

−1 h
dx

1
h
dx

−dx
h

−1 dx
h

−1 −dx
h

1
dx
h

1

−1 − h
dx

1 − h
dx

−1 h
dx

1
h
dx

3
77777777777777777777777777777777775

ð16Þ

Impact of Diagonal Cracking

The results obtained using the matrix ½K1� for flexure and axial
loads plus ½K2� for shear forces will produce good estimates of
strength and stiffness prior to diagonal shear cracking but will
provide unconservative estimates of demand on the longitudinal

reinforcement after diagonal cracking. To understand why, consider
Fig. 9, which shows free-body diagrams with sectional forces on
the left and simplified force demands on the top and bottom chords
and web of the member on the right sides. After diagonal cracking,
shear is carried primarily by diagonal compression in the web be-
tween the cracks (Vecchio and Collins 1986), and while the vertical
component of this diagonal compression carries the shear, the hori-
zontal component must also be resisted. Prior to diagonal cracking,
the force component from the principal tensile stress direction will
cancel out these horizontal reactions, but these will no longer bal-
ance after diagonal cracking. The additional force demand from
shear is calculated as V · cotðθÞ, as shown in Fig. 9, if the average
residual tensile stresses from tension stiffening in the web are
neglected, which is the case with design codes.

In the constitutive model for shear [Eq. (13)] this additional lon-
gitudinal demand is represented by the term fcx. This term can be
thought of as the additional longitudinal compressive stress re-
quired to hold the strain state to the assumed values under the given
shear loading. The first equilibrium equation of the MCFT in Fig. 2
shows that when using average stresses, this longitudinal compo-
nent is calculated as:

ρx · fsx ¼ fx þ v · cot θ − f1 ð17Þ

where the left side of the equation gives the average demand on
the longitudinal reinforcement and the right side of the equation
is the term fcx in Eq. (13). The challenge with using this equation
is the allocation of the term fx, which represents the average
X-direction stress that the shear region carries from the combined
effects of axial load, prestressing, and moment. Assuming this
value to be zero because the shear panel is near the neutral axis
and is only intended to carry shear forces, the equation can be
rearranged as follows:

ρx · fsx þ f1 ¼ v · cot θ ð18Þ

The left side of the equation contains the average steel and con-
crete stresses that have already been accounted for in the axial and
flexural analysis that produced ½K1�. The right side of the equation
shows the additional demand on the longitudinal reinforcement,
similar to that shown in Fig. 9.

Fig. 8. (a) Shear stress acting on the effective panel area; and
(b) transforming the horizontal shear force while maintaining moment
equivalency.

Fig. 9. Contributions to tension in top and bottom chords in a
code-based shear model for (a) negative shear; and (b) positive shear.
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This additional demand on the longitudinal reinforcement could
be accounted for as an equivalent axial force applied to the flexural-
and axial-load analysis. But this would produce convergence issues
because the source of this force would be the shear analysis, and
the resistance would be the flexural analysis and the two are tied
together. To avoid this disconnect, this longitudinal effect of shear
stress is better included directly in the shear stiffness matrix.
Because this will result in the same sectional forces causing larger
strains than previously obtained, this additional matrix ½K3� will
produce stiffness which subtracts from ½K2� in the longitudinal di-
rection. With the additional stress demand as v · cotðθÞ, the shear
area as dv · bw, and an equal distribution of force between the top
and bottom node, the X-direction tension force at each node on the
right face can be expressed as:

Fx ¼ 0.5 · dv · bw · cot θ · Ḡ · γxy ð19Þ

The ½K3� matrix expresses the effects of the additional longi-
tudinal demands from shear stresses [Eq. (20)] and is obtained by
substituting the equation for shear strain [Eq. (12)] into Eq. (19).
Tension is always added to the chords (i.e., left face = negative
sign and right face = positive sign) irrespective of the shear
deformation because the product of cotðθÞ, and γxy is always
negative

½K3� ¼ A ·

2
666666666666666666664

− 1
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− 1

dx

1

h
− 1

dx
− 1

h
1

dx
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1

dx
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dx
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h
− 1

dx
− 1

h
1

dx
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h
1
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0 0 0 0 0 0 0 0

1

h
1
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h
1

dx

1

h
− 1

dx
− 1

h
− 1

dx
0 0 0 0 0 0 0 0

1

h
1

dx
− 1

h
1

dx

1

h
− 1

dx
− 1

h
− 1

dx
0 0 0 0 0 0 0 0

3
777777777777777777775

ð20Þ

where

A ¼ dv · bw · cot θ · Ḡ
4

Fig. 10. Transforming the horizontal chord force acting on the reduced
area to the nodal position.
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Fig. 11. Single-element analysis of 1-m-long cantilever with shear force V.
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While the forces are again being transformed from the reduced
shear area to the element nodes (Section 4 discusses this), a cor-
rection factor of dv=h should not be applied. This is because
solving the equilibrium condition shown in Fig. 10 results in
Fx ¼ F, which is different from the equilibrium condition illus-
trated in Fig. 8.

As is clear, matrix ½K3� is not symmetric because the longitu-
dinal effects of shear are only applied in the X-direction. The com-
ponents in the vertical direction are neglected because the zero
clamping condition already accounted for deformation in that di-
rection. If these terms were retained in the matrix, it would still
not be symmetric. Thus, although the inclusion of this longitudinal
demand from shear into its own matrix does allow better conver-
gence, it does so at the cost of making the matrix nonsymmetric.

With ½K3� defined, it is now possible to generate the full stiffness
matrix as shown in Eq. (1).

Validation of Shear Assumptions

To determine the appropriateness of the assumption that fx in
Eq. (17) can be accurately taken as zero, consider the analyses
summarized in Fig. 11. These analyses are of a single-element
cantilever fixed on the left and with a distributed vertical force
V applied to the right-side nodes. The reinforced concrete
member being analyzed contains 900 mm2 of 500-MPa yield
strength tension reinforcement on the top and about 1.5 times
code specified minimum stirrups [ACI Committee 318 (ACI
2019); CSA 2019]. The concrete has an ultimate cylinder
strength of 32 MPa with a 19-mm specified coarse-aggregate
size. The yielding flexural capacity of this member based on
a strain compatibility analysis (Bentz 2000a, b) is 326 kN · m.
Because the element derivation produces a constant internal
bending moment, this moment capacity can be considered valid
at the middle of the element giving a maximum shear associated
with flexural yield of 326 · 2 ¼ 652 kN, or off the top of the
graph in Fig. 11. The ACI code calculates that the shear strength
should be 256 kN, whereasthe CSA code predicts a shear
strength of this element of 251 kN. Thus, this member should
be expected by the proposed finite-element model to fail in shear
at a load V of ∼250 kN.

If the behavior of this one-element cantilever is analyzed using
only stiffness matrices ½K1� and ½K2�, that is, neglecting the influ-
ence of diagonal cracking, the top line in the graph is obtained. The
subtle change of slope at V ¼ 160 kN is associated with flexural
cracking whereas the change in slope at V ¼ 190 kN is associated
with shear cracking. The further change of slope when the shear
reaches 311 kN is associated with yield of the stirrups and the peak
strength is associated with crushing of the concrete in diagonal
compression due to shear, which is how the MCFT predicts shear
failures of members with stirrups. Thus, this model with only ½K1�
and ½K2� does predict a shear failure but at a force too high when
compared with design codes.

If, instead, the analysis is performed as intended with ½K1�, ½K2�,
and ½K3�, the lower solid line in Fig. 11 is obtained. This analysis
shows the same flexural and shear cracking behavior, but afterward,
the additional longitudinal forces included via matrix ½K3� cause
much lower stiffness after cracking and a lower shear strength.
Indeed the predicted shear strength of 261 kN is very close to
both the ACI and CSA shear strengths, showing the importance
of matrix ½K3� and suggesting that the assumptions in making this
matrix are appropriate.

As a final check of the assumptions, the dashed line in Fig. 11
shows the predictions from the computer program RESPONSE
(Bentz 2000b). This sectional analysis program uses about 100

dynamically assigned biaxial concrete layers in the analysis and
solves for the analytical shear stress distribution that results from
the constitutive model and equilibrium (Jouravski 1856). Unlike
the proposed element, RESPONSE makes no assumptions about
the value of the term fx [Eq. (17)] in its analyses. The result is shown
in Fig. 11 to be similar to the method proposed in this paper with
similar strength and ductility, but somewhat higher stiffness between
diagonal cracking and stirrup yield. That the RESPONSE line is
reasonably close to the proposed method line suggests that the as-
sumptions behind the new method are appropriate. Details of the
constitutive model used in this example are given in the Appendix.

Strategies for Analysis

The flowchart in Fig. 12 details the computational procedure that is
followed in a program that implements the element.

Fig. 12. Analysis process flowchart.
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Validation of Element

Although Fig. 11 compared the analysis results with codes, it is
also necessary to compare the proposed analysis method with ex-
perimental results. This will be performed via a mesh sensitivity
study against a pair of tests (Sherwood et al. 2007; Sherwood
2008), followed by a comparison with a database of test results
(Reineck et al. 2013, 2014).

Mesh Sensitivity Study

To examine mesh sensitivity and ability to model the shear behavior
of slender reinforced concrete members, consider the two shear ex-
periments in Figs. 13 and 14. These experiments were performed at
the University of Toronto by Sherwood et al. (2007) and Sherwood
(2008). Included here are Specimens L-10H and L-10HS, where
the former did not contain shear reinforcement and the second test
contained minimum shear reinforcement. Both tests were a total of
9 m long and 1.51 m deep with a concrete strength of 72 MPa and
contained flexural reinforcement as shown in Fig. 14. Both beams
were tested monotonically under three-point bending and were
meant to represent 300-mm-wide strips cut from one-way slabs.
Both members failed in shear, with Fig. 13 showing L-10HS after
shear failure, with Sherwood present for a sense of scale.

In the analysis of these beams, shown in Fig. 14, a total of 54
elements were used between the supports along with an additional
three elements on each end beyond the supports. Self-weight was
applied as constant nodal loads, and the displacement of the top
node was incrementally lowered until the peak strength was as-
certained. The beam geometries and reinforcement (Sherwood
2008) are shown in cross section in Fig. 14, and this geometry
was used for the majority of the length of the member. Near
the point load, however, a modified member type (explicitly de-
fined and assigned by the user) was used to force any shear failure
to occur at the critical section for shear, at a distance of the ef-
fective depth, d, from the point load. Thus, within a distance of
1,400 mm of the point load, the stirrup yield stress was doubled
for Beam L-10HS, whereas minimum stirrups were added to the
same region of Beam L-10H. This way the member would crack
in shear and flexure near the point load but a shear failure would
be suppressed at these locations. The reason codes indicate that
the critical section for shear is away from the point load is that
failure is predicted to occur by sliding on a diagonal crack, and
this is not physically possible to occur exclusively within a narrow
vertical element near the point load. This method of suppressing
shear failures near point loads is treated coarsely here and can be
improved upon.

As shown in Fig. 14, the analysis using 54 elements and the
tension stiffening relationships in Eq. (21) of the Appendix produce

Fig. 13. Crack patterns of L-10HS at failure: (a) Sherwood standing beside tested specimen; (b) observed crack pattern; and (c) crack pattern from
finite-element analysis using proposed method.
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excellent estimates of the load-deformation behavior of these two
large tests. Both members were predicted to fail in shear and at
appropriate estimates of the experimental force and deformation.
Fig. 13 shows the predicted and observed crack patterns. Here
the calculated angle, θ, from the MCFT was used at middepth
and a linear variation in angle was used elsewhere, reaching zero
at the flexural compression face. The figure shows this to be a good
approximation for the purpose of presenting crack diagrams for
shear tests.

Close inspection of the prediction in Fig. 14 for the member
with stirrups shows locations where the force prediction dropped
to a slightly lower force as loading continued. These occurred be-
cause new elements along the length of the mesh were predicted to
crack diagonally, which lowers the stiffness of the member as a
whole. This, along with the ability to model nonconstant moments,
is one of the key reasons that multiple elements along length of the
member are needed. The decrease in predicted displacement after
failure is artificial and is due to localization of damage within a
single element.

To explore how many elements are required for good results,
the mesh sensitivity analysis in Fig. 15 was conducted for Member
L-10HS. With these analyses, the regions of the beam extending
beyond the supports in the tested specimens were neglected
[meshes in Fig. 15(a) show examples of this], and the Kv terms in
the stiffness matrix for elements adjacent to point loads were made
1,000 times stiffer than as calculated in Eq. (7) in Section 4. The
latter change was required because when elements get very short
longitudinally, they demonstrate an unrealistic amount of predicted
support settlement (i.e., transverse deformation) due to the concen-
trated loading or reaction forces. As mentioned previously,

elements occurring within d ¼ 1,400 mm from the central point
load were given higher shear strength to suppress shear failures
there [darker shade in Fig. 15(a)].

Fig. 15(b) shows the calculation of elastic flexural stiffness as
the number of elements is increased. The beam theory line includes
elastic shear deformations because the model includes these as
well. Although the model converged to the theoretical solution with
code-estimated concrete stiffness and uncracked transformed mo-
ment of inertia, it did not converge to the test result. This is a
reminder of the challenges of modeling the behavior of concrete,
even when uncracked. From Fig. 14, however, for engineering pur-
poses, the uncracked stiffness was modeled sufficiently well even
with a relatively small number of elements.

Fig. 15(c) shows the sensitivity in predicted shear strength with
the number of elements in the analysis showing a relatively low
sensitivity and that the results converged approximately to the ex-
perimental result. The lack of a smooth predicted change in failure
load as the number of elements increased demonstrates the rela-
tively complex interaction of bottom flange cracking and shear
cracking as the mesh density goes up. Fig. 15(d) shows that the
predicted deformation at maximum predicted load also converged
but more slowly than did the shear strength. It might be surprising
that an analysis with an insufficient number of elements overesti-
mated deformations at ultimate limits states; when elements are
too large, the member shear deformations are overestimated be-
cause high shear strains are applied over an inappropriately longer
length than with smaller elements. The meshing strategy was to
aim for all elements to be about the same length subject to the limi-
tation of the fixed boundary line location between the stronger and
weaker areas.
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Fig. 14. Observed and modeled shear failures for beam with (L-10HS) and without (L-10HS) stirrups.
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Overall, the results from Fig. 15 indicate that elements should be
at least half a member depth in length, h=2, but need not be made
much shorter than a quarter, h=4, to get good results for strength
and stiffness.

Shear-Critical Slender Beam Database

Structural analysis models using the proposed element were built to
replicate individual reinforced concrete beam tests found in the
largest publicly available database for shear-critical experimental
results compiled by the American Concrete Institute (Reineck
et al. 2013, 2014). The predicted failure load from an analysis
was compared with the recorded experimental failure load [denoted
as the experimental/predicted (Exp./Pred.) ratio]. A ratio greater
than 1.0 implied that the analysis was conservative and underpre-
dicted the actual failure load, which in theory is an acceptable out-
come from a design perspective because the safety of the structure
is guaranteed. The analysis results using the proposed element are
illustrated in Fig. 16(a). These conservative results are especially
important in shear-critical cases because the failure mechanism
of such structures is brittle and occurs without much warning.

Table 1 summarizes the results of the FEM analysis using the
proposed element and compares them with results using three
other design codes taken from Mari et al. (2016). The results
from this validation exercise (Bruun 2017) have been broken
down into beams with and without stirrups and whether the
beam had a rectangular or T-shaped cross section. As seen in
Figs. 16(b and c), good agreement with the cumulative density
function of a normal distribution was shown for the lower half
of the results for both cases. This implies that there was no sys-
tematic error in the use of the proposed element in predicting
beams that fell into the lower unsafe range. The results for the
782 beams without stirrups are best represented with a normal
distribution ðExp:=Pred:Þ ∼ Nð1.308; 0.2062Þ, with a coefficient
of variation (COV) of 15.8% and a fifth percentile value of
0.96 (i.e., 5% of tests fell below this value). The results for
the 167 beams with stirrups are best represented with a normal
distribution, ðExp:=Pred:Þ ∼ Nð1.40; 0.2942Þ, with a coefficient of
variation of 21.0% and a fifth percentile value of 0.92. These
values are improvements to the statistical results obtained from
the analyses based on the ACI 318-11 (ACI 2011) and EC-2
(BSI 2008) design codes in Table 1 (CSA 2014).
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Conclusion

This paper derived and validated a novel finite element for rein-
forced concrete that can be used to accurately analyze shear-critical
beams and columns. The element was specifically formulated to
span the full depth of a cross section, using only eight translational
DOFs (two per node) to calculate the strain state and then repre-
sent the complex behavior typical of reinforced concrete. The stiff-
ness matrix for the element was assembled from three separate
components:

• K1 (flexure/axial): based on the axial strain distribution calcu-
lated at the top and bottom of the cross section;

• K2 (shear): based on shear strain and longitudinal strain at
middepth calculated from the nodal displacements. A MCFT
analysis was performed to determine the transverse strain asso-
ciated with a zero clamping stress condition. The resulting shear
stiffness generates K2; and

• K3 (diagonal cracking): based on the angle of diagonal cracking,
θ, calculated from the MCFT analysis, this captures the addi-
tional demand on the longitudinal reinforcement due to shear
after diagonal cracking.
Individual simply supported beams can be accurately modeled

to find the shear strength with just 10–20 elements along the length
of the member. An element length between 1=2 and 1=4 the depth
of the member is generally recommended for this type of analysis.
In general, a finite-element analysis using the proposed element
was shown to require significantly fewer degrees of freedom than
an analysis using traditional 2D elements to produce accurate
results.

The full validation of the element was performed against the
experimental results from a database of shear-critical reinforced
concrete beams: 782 beams without shear reinforcement and
167 beams with shear reinforcement were modeled. The results
from the FEM analyses using the proposed element showed im-
provements compared with the results when using ACI 318-11
(ACI 2011) and EC-2 (BSI 2008) design codes. Future develop-
ment of the element will focus on expanding the types of loading
conditions, structures (e.g., concrete frames and frames with walls),
and failure modes that can be accurately modeled.

Appendix. Modified Tension-Stiffening Relationship

In generating Fig. 11, the constitutive equations in Fig. 2 could
have been used and would produce reasonable results for this case.
However, the results for other members, such as those without
stirrups, are relatively sensitive to the assumed tension-stiffening
relationship. It is thus recommended that the tension stiffening
relationship in Fig. 2, be replaced with an alternate. For shear
analyses at depths of a beam that are within 15 bar diameters of
concentrated longitudinal reinforcement, the Bentz (2005) model
should be used. When depths of interest are further from longitu-
dinal reinforcing steel, the tension stiffening (f1) is less governed
by the principal tensile strain (ε1) but by shear on the crack (vci)
instead. For such cases, it is recommended that, after diagonal
cracking, the tension-stiffening relationship instead be taken as
follows:

f1 ¼ min

�
vci

tanðθÞ ; vci · tanðθÞ
�

vci ¼
vci;max

2
ð21Þ

Table 1. Shear test database summary (based on 2013 version of database)

Type

No stirrups Stirrups

n μ COV (%) 5th percentile n μ COV (%) 5th percentile

ACI 318-11 784 1.42 38.3 — 170 1.52 22.3 —
EC-2 784 1.10 27.9 — 170 1.44 17.9 —
CSA A23.3-14 784 1.22 22.3 — 170 1.29 29.8 —
Proposed element 782 1.30 15.8 0.96 167 1.40 21.0 0.92
Rectangular beam 718 1.30 15.2 0.97 113 1.33 16.6 0.96
T-beam 64 1.51 16.6 1.10 54 1.53 26.2 0.87

Fig. 16. Analysis results for full shear-critical beam test database:
(a) histogram of analysis results; CDFs assuming a normal distribution
for (b) no stirrups; and (c) stirrups.
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where vci;max = maximum value of Eq. (15) in Fig. 2. This proposed
equation uses only 50% of the MCFT maximum shear on the crack
because the implementation already includes tension stiffening,
unlike design codes based on the MCFT. This maximum shear on
the crack is a function of concrete strength, aggregate size, and the
calculated crack width, w. In determining this crack width, the lon-
gitudinal direction crack spacing, sx, should be taken as the shear
depth, dv ¼ 0.9d, and in the transverse direction, the crack spacing,
sz, should be taken as 300 mm if minimum stirrups are provided or
five times the member depth otherwise. For concrete strengths in
excess of 70 MPa, the aggregate size, ag, should be taken as zero
because cracks tend to cleave the aggregate rather than form around
them. Also, when a shear crack exceeds 25 mm, the stirrups are
assumed to rupture and thus can no longer resist any force. Some
of the very conservative predictions in Fig. 16(a) may indicate that
the experiment showed strut-and-tie behavior, which the proposed
method in this paper cannot account for well.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.

Acknowledgments

The authors would like to acknowledge the support of the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

Notation

The following symbols are used in this paper:
Ac, As = area of concrete and steel;

a =maximum size of coarse aggregate;
b = width of cross section at given depth;

bw =minimum web width of cross section;
d = distance from extreme compression fiber to

centroid of tension reinforcement;
dc, ds = depth of concrete and steel;

dv = shear depth;
dx = longitudinal length of an element;

dεtop, dεbot = incremental strain at top and bottom of the
element;

Ēc, Ēs = longitudinal secant stiffness for concrete
and steel;

Ēc1, Ēc2 = principal tension and compression secant
stiffness;

F = force acting on the effective shear panel
area;

Ft, Fb = horizontal force in top and bottom of
element;

Fx = additional cracking tensile force [Eq. (17)];
Fx, Fy = applied horizontal and vertical shear force

at node [Fig. 7(b)];
fcr = tensile strength of concrete;
fcx = longitudinal component of shear stresses

carried by diagonally cracked concrete;
fsx, fsy = average stress in steel reinforcement in x-

and y-directions;
fsxcr, fsycr = local stress in reinforcement at the crack in

the x and y direction;

fx, fy = stress in the x- and y-directions;
fx;yield; fy;yield = yield stress in the x- and y-direction steel;

Ḡ = shear secant stiffness;
h = overall depth of cross section;

KB, KT , KTB, KBT = flexure/axial matrix longitudinal stiffness
terms;

Kv = flexure/axial matrix vertical stiffness terms;
K1, K2, K3 = flexure/axial, shear, and diagonal cracking

stiffness matrices;
ks = stiffness of stirrup steel;

MT , MB = moment about top or bottom of cross
section;

N, M, V = axial, moment, and shear forces on cross
section;

sx, sy = crack spacing in the x- and y-directions;
sθ = diagonal crack spacing;
u = unit displacement;
v = shear stress (MCFT);

vci = shear stresses on crack face resisted by
aggregate interlock;

vci;max = maximum shear stresses on crack face
resisted by aggregate interlock;

w = crack width;
y = vertical distance measured from the bottom

of the cross section;
ΔFx = change in horizontal force at node;

Δx, Δy = horizontal and vertical displacement of
node;

εc, fc = concrete strain and stress;
ε 0c, f 0

c = concrete strain and stress at maximum
capacity of cylinder;

εs, fs = steel strain and stress;
εtop, εbot = average longitudinal strain at the top and

bottom of the element;
εx, fx = longitudinal strain and stress;
εy, fy = transverse strain and stress;
ε1, f1 = average principal tensile strain and stress;
ε2, f2 = average principal compressive strain and

stress;
ϕ = curvature due to moment;

γxy, vxy = shear strain and stress;
μ = mean of normal distribution;

ρx, ρy = percentage reinforcement in x- and
y-directions of shear panel;

θ = angle of principal compressive stresses to
the longitudinal axis of the member; and

θL = rigid-body rotation angle (left side).
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