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Synopsis: Post-cracking stiffness is an important parameter in determining the proper distribution of forces in the 
analysis of statically indeterminate reinforced concrete structures. While the ACI 318-19 code specifies typical values 
to use in modelling flexural cracking, the same guidance is not available when calculating post-cracking torsional 
stiffness. This paper presents a summary of the academic literature on the topic as the basis for developing a novel 
stiffness-based design procedure, which is then implemented in the design case study of a spandrel beam supporting 
a cantilevered roof slab. This example demonstrates a situation where a specific torsional stiffness is required to satisfy 
serviceability requirements. The design method is general and, therefore, applicable to any situation where an accurate 
measure of torsional stiffness or moment redistribution is required – this removes the need to iteratively model and 
design to capture post-cracking effects in structural members. 
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INTRODUCTION  
Modern structural engineers have access to a variety of resources to guide them in the strength design of reinforced 
and prestressed concrete members subjected to torsion. However, rational design procedures for torsion are still a 
relatively new development compared to design provisions for axial load and flexure – current torsional code 
provisions are mainly centered around the goal of achieving a safe strength design, compared to the more 
comprehensive provisions for flexural design. While this focus is understandable given the importance of life safety, 
there is little information in both academic literature and design codes which consider torsional effects in the context 
of designing for serviceability. 

A thorough code such as the ACI 318-191 will contain several guidelines on the topic of flexural cracked stiffness, 
which are used by engineers to design for strength (i.e. to model the redistribution of forces) or serviceability (i.e. to 
model deflections). Since the true post-cracking stiffness of a member is a function of its reinforcement, certain rules 
of thumb regarding cracked stiffness are utilized by designers to capture these effects at the outset of a design to avoid 
excessive iteration  – tables 6.6.3.1.1(a) and (b) in ACI 318-19 are commonly utilized to represent cracked stiffnesses 
in an elastic analysis.  

On the other hand, similar guidelines for post-cracking torsional stiffness are not available, and the knowledge on how 
to properly model torsion, as opposed to other section resultants, is still not as readily available. To illustrate this, 
before proceeding with this paper perform a simple experiment and ask a practicing structural engineer the following: 

For a cracked beam, without performing a calculation, state a reasonable percentage 
of the uncracked a) flexural and b) torsional stiffness to use in modelling and design. 

We predict that the flexural case would prompt some standard answer taken from the cracked stiffness tables (e.g. 
35% Ig), while the torsional case would lead to significantly more ambiguity. A common answer to the question of 
torsional stiffness might even be that it simply does not matter, but this is only a valid principal for the strength design 
of statically determinate structures where the torsion is necessary to maintain equilibrium and cannot be redistributed 
(i.e. the magnitude of resulting torsion is independent of stiffness). In statically indeterminate structures where 
redistribution based on relative stiffnesses occurs, or in situations where deflection and rotation criteria are important, 
representing the torsional stiffness of the member correctly is still important. 

The lack of explicit code guidance when considering torsion in serviceability situations was the catalyst for this paper, 
which will attempt to demystify the topic so that the knowledge is more readily available for future practical 
applications. The paper will begin with an overview of torsional design and a review of the existing literature, 
following with an explanation of a new stiffness-based design procedure, and concluding with an application of this 
procedure in a design case study of a spandrel beam whose design is governed by serviceability requirements. 
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REVIEW OF LITERATURE AND TORSONAL DESIGN PROCEDURES 
Significant research on the topic of torsion in reinforced and prestressed concrete was first aggregated and published 
in SP-0182, Torsion of Structural Concrete, but it was only in 1971 that detailed procedures for torsion were included 
in the ACI 318 design code3. The following decade saw a flurry of activity on the subject, such as SP-0354, Analysis 
of Structural Systems for Torsion, and seminal work by Collins5,6, Mitchell6, Lampert5,7 and Hsu8, which are 
effectively the foundation for the current design approaches for torsion.  

Conceptually, one of the most important principles to understand when designing for torsion in reinforced concrete 
structures is the distinction between equilibrium and compatibility torsion, discussed by Collins and Lampert5, which 
refers to how the torsional stiffness changes after cracking. Paraphrasing the commentary to clause 22.7.3 in ACI 318-
19, these principles can be summarized as follows: 

a) Equilibrium Torsion: The torsional moment cannot be reduced by redistribution of internal forces… [if] the
torsional moment is required for the structure to be in equilibrium.

b) Compatibility Torsion: The torsional moment can be reduced by redistribution of internal forces after
cracking if the torsion results from the member twisting to maintain compatibility of deformations.

Torsional Stiffness in Strength Design  

Designing for equilibrium torsion, which typically occurs in statically determinate structures, is relatively straight-
forward because there is only one possible path for the load to take. The design moments are simply a function of the 
geometry and external global loading and are independent of the member stiffnesses. If this load path happens to result 
in torsion, this member will always experience the same magnitude of moment independent of its level of cracking. 
In contrast, compatibility torsion is the result of an internal action in a statically indeterminate structure, whereby a 
member undergoes a twist as it deforms together with the adjacent structure. The relative member stiffnesses become 
important in determining the distribution of flexural and torsional moments.  

The design procedure for an indeterminate structure is simplified, since the true cracked torsional stiffness is rarely 
known at the outset of a design. One common approach is to reduce the torsional stiffness of a member to 
approximately 0 to reflect the large drop in torsional stiffness, as observed in experiments on beams5 and shells9,10. 
Although this is a simplification, as the member will intuitively have some non-zero stiffness, this approach removes 
the need to consider relative stiffnesses and their influence on the torsional load path. In fact, so long as the surrounding 
members are adequately designed for the additional flexural moments resulting from redistribution, this approach has 
been shown to result in safe ultimate strength designs5. Modelling with the reduced torsional stiffnesses has the added 
benefit of ‘releasing’ the compatibility portion of the resultant torsion; only the remaining equilibrium portion remains 
to be designed for. This is a valid approach, assuming that the applied torsions are above that required to crack the 
member, and that the member is adequately detailed for ductility and the resulting rotation.  

The commentary to clause 6.3.1.1 in ACI 318-19 states the conditions for considering torsional stiffness in analysis: 

“Two conditions determine whether it is necessary to consider torsional stiffness in the analysis of 
a given structure: 1) the relative magnitude of the torsional and flexural stiffness; and 2) whether 
torsion is required for equilibrium of the structure (equilibrium torsion) or is due to members 
twisting to maintain deformation compatibility (compatibility)” 

Torsional Stiffness in Serviceability Design  

To neglect torsional stiffness is a trade-off between simplicity in design and realistic structural behavior – when proper 
redistribution is accounted for, this compromise is acceptable from the standpoint of safety. But to apply this same 
approach when designing for serviceability criteria (for both equilibrium and compatibility torsion situations) is not 
always appropriate as it will over-estimate the magnitude of rotations and deflections. While it is uncommon that the 
twisting of a member will have a significant impact on the overall deflections of a structure, there are situations where 
precise tolerances necessitate that the torsional stiffness of a member be known as accurately as possible. As an added 
benefit, this stiffness information can always be used to better inform the analysis of an indeterminate structure, which 
is an update to the zero-stiffness assumption. This is also consistent with a need to consider torsional stiffness as per 
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the commentary excerpt in the previous section. The importance of using proper stiffnesses is further alluded to in the 
commentary to clause 6.3.1.1, which was expanded in ACI 318-19 to include the following statement: 

“Separate analyses with different stiffness assumptions may be performed for different objectives 
such as to check serviceability and strength criteria or to bound the demand on elements where 
stiffness assumptions are critical” 

This is also stated in clause R6.6.3.2.2, which is generally applied to modelling for serviceability conditions: 

“Analyses of defections, vibrations, and building periods are needed at various service (unfactored) 
load levels to determine the performance of the structure in service. The moments of inertia of the 
structural members in the service load analyses should be representative of the degree of cracking 
at the various service load levels investigated.” 

Yet even though torsional stiffness is mentioned as an important factor, there is no explicit guidance on what values 
of torsional stiffness to use for either serviceability checks or in the analysis of indeterminate structures. 

Methods for Calculating Torsional Stiffness of Reinforced Concrete Members 

For a member which primarily resists torsional moments by means of circulating shear stresses, the relationship 
between the torque and the twist of the member is:  

𝑇 = 𝐺𝐾 ∙ 𝜓	 (1) 

Where T is the torque, G is the shear modulus of the material, K is the St. Venant’s torsion constant and ψ is the twist 
of the member in units of angle per unit length. The product GK is typically referred to as the torsional stiffness.  

Prior to cracking, the torsional stiffness can be calculated using elastic theory as developed by St. Venant. For example, 
the uncracked stiffness GKg is calculated using the following formula for members with a rectangular cross section:  

𝐺𝐾! = 𝐺 ∙ 𝛽𝑏"ℎ	 (2) 

Where b and h are the short and long sides of the rectangle respectively and β is a coefficient related to the aspect ratio 
of the member. Values of β are shown in Table 1. 

Table 1: Typical values of β 
h/b 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 10.00 ∞ 
β 0.141 0.172 0.196 0.214 0.229 0.249 0.263 0.281 0.291 0.312 0.333 

Following cracking of a member loaded in pure torsion, the circulating shear stresses are now carried by spiraling 
fields of diagonal compression in the concrete which are equilibrated by tensile stresses in the longitudinal and 
transverse reinforcement.  Figure 1 shows the typical torque-twist response of a reinforced concrete member subjected 
to pure torsion. After cracking occurs, there is a transition region which is approximately linear until either direction 
of steel yields. The precise behavior in this transition region is not well defined and is highly dependent on when 
cracking takes place and the presence of accompanying axial load, shear and moment. For this reason, the post-
cracking stiffness used in this paper, GKcr, will be taken as the torque when yielding of either direction of 
reinforcement occurs divided by the corresponding twist. The benefit of using this secant approach is that GKcr is 
independent of the level of torsion present, making it conceptually consistent with the use of first-order elastic analyses 
which are typical in engineering practice. It also overestimates the twist under service loads and overestimates the 
resulting design torque at ultimate limit states, making it a simple yet conservative approach for both strength and 
serviceability calculations.  
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It should be noted that although there are other definitions of the post-cracking torsional stiffness which have been 
used by other researchers (such as by Hsu8 and Tavio and Teng11), the secant stiffness approach suggested here is the 
simplest and most practical approach for designers trying to understand how the torsional stiffness of their members 
affects the displacements and member forces in their analysis models.  

Figure 1 – Typical torque-twist response of a reinforced concrete member subjected to pure torsion 

The first expression for the post-cracking stiffness of rectangular reinforced concrete member in pure torsion was 
developed by Lampert in 19737. Lampert’s equation, applicable for both hollow and solid members, calculates GKcr 
as the following: 

𝐺𝐾#$ =
4𝐸%𝐴&&

𝑝&& 3
1
𝜌'
+ 1
𝜌(
6

(3) 

𝜌' =
𝐴'
𝐴!

(4) 

𝜌( =
𝐴(𝑝)
𝐴#*𝑠

(5) 

Where: 
Es is the Young’s modulus of steel 
A2 is the area enclosed by the centre of corner longitudinal bars 
P2 is the perimeter of A2  
Al is the total area of longitudinal reinforcement in the member 
Ag is the gross area of concrete in the cross section 
At is the area of one leg of closed transverse torsional reinforcement 
Acp is the area enclosed by the outside perimeter of the cross section 
s is the spacing of transverse torsional reinforcement 
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An alternative method for calculating GKcr for general cross sections was formulated by Collins and Mitchell12 and is 
shown below: 

𝐺𝐾#$ = :
𝐸%
2 ;

4𝐴+&

𝑝+
<:
𝐴(
𝑠 ;

𝐴' + 𝐴*
𝑝+

	 (6) 

In this equation, Ao is the area enclosed by the shear flow path, typically taken as 0.85Aoh, where Aoh is the area 
enclosed by the centerline of the outermost closed transverse reinforcement, po is the perimeter of the shear flow path, 
typically taken as 0.9ph, where ph is the perimeter of the centerline of the stirrups, and Ap is the area of prestressed 
reinforcement.  

After cracking, the mechanism for resisting the torsion is considerably more flexible than before, with the residual 
stiffness typically being significantly reduced to between 5% and 20% of its original value. Equations (3) and (6), as 
well as other formulations for GKcr in the literature, generally agree that the main determining factors for the post-
cracking stiffness are the quantity of reinforcement and the area enclosed by the transverse hoop steel. To illustrate 
this, Figure 2 shows the relationship between the quantity of reinforcement present and the ratio of GKcr to GKg, 
henceforth defined as μ, using Lampert’s equation for GKcr. For this particular member, even providing impractically 
large amounts of reinforcement lead to μ being less than 15%.  

Figure 2 – Influence of reinforcement on μ using Lampert’s expression for GKcr

In practical situations, reinforced concrete members are generally subjected to simultaneous moment, shear and 
torsion, which contrasts with the simpler case of pure torsion. In deriving his equation for GKcr however, Lampert 
concluded that the torsional stiffness is independent of the presence of the shear force and is only minorly affected by 
the presence of bending moment7. Hence, using the post-cracking stiffness for a member in pure torsion is an 
appropriate approach even when other actions are also present. 
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DESIGN PROCEDURE 
A design procedure that takes into account torsional stiffness in the context of serviceability is shown in Figure 3. 
Although the flowchart shows the full solution space with respect to potential design outcomes, the case study and 
design example in the following section will be centered around the stiffness design path for an indeterminate structure 
(compatibility torsion), which can be summarized as follows: 

STEP 1:  Structural analysis model run with uncracked torsional stiffness values 
a. Does the member torsion exceed the cracking torsion?

i. Yes – Evaluate structure (Proceed to Step 2)
ii. No – Follow ACI 318-19 design procedure (if the torsion is higher than the threshold value)

STEP 2:  Is the structure statically determinate or statically indeterminate? 
a. Indeterminate – compatibility torsion case (Proceed to Step 3)
b. Determinate – equilibrium torsion case (Proceed to Step 4)

STEP 3:  Update structural analysis model with ~0 cracked torsional stiffness 
a. Are deflections above those required for serviceability?

i. Yes – Update stiffness (Proceed to Step 4)
ii. No – Follow ACI 318-19 design procedure

STEP 4:  Update structural analysis model with maximum cracked torsional stiffness 
a. Are deflections above those required for serviceability?

i. Yes – Serviceability cannot be satisfied by updating stiffness
ii. No – Update stiffness (Proceed to Step 5)

STEP 5:  Interpolate to find target stiffness target 

STEP 6:  Design for target stiffness – check to ensure strength design satisfied 

In this procedure, a key parameter to calculate is µmax, which is defined as the maximum ratio of μ = GKcr/GKg that 
can be achieved given an excessively reinforced section. This term is calculated by selecting appropriately large ratios 
of longitudinal and transverse steel (defined in Eq. 3), for example: rl = 4.5% and rt = 1.5% (chosen at the discretion 
of the designer). μmax is an upper limit of μ and does not require the designer to design the member first, meaning that 
it can be determined at the outset of modelling.  

In lieu of a more detailed and iterative analysis, the proposed methodology suggests calculating the target torsional 
stiffness (µtarget) from a linear interpolation based on the deflection results from the two models (µ ≈ 0 and µ = µmax) 
which has been shown to give reasonable results for the case study discussed in this paper.  
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Figure 3 – Torsional design procedure (stiffness method for indeterminate structure highlighted) 
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TORSIONAL STIFFNESS CASE STUDY 
The following case study will introduce the challenges encountered in the design of a series of a reinforced concrete 
spandrel beams supporting a cantilevered roof; the goal is to demonstrate a situation where post-cracking stiffness in 
the context of serviceability criteria was an important design consideration. A series of spandrel beams, spanning 
between columns, together with the roof slab back-span, were supporting a cantilevering beam-slab system that formed 
the curved overhanging canopy. For further clarification of the structure, see the renderings (Fig. 4) that illustrate the 
large roof cantilevers. Note that in the final condition, the ribbed-slab cantilevering beyond the façade is hidden by 
the finishes required to achieve a flat continuous soffit between the interior and exterior portions of the building. 

Figure 4– Renderings of case study structure showing roof overhangs (Courtesy of 
heneghan peng architects / Kearns Mancini Architects, and Luxigon as renderer) 

Modelling and design approach 

The design of the roof was unusual for the following reasons: 
• Geometry: long cantilevers, in excess of 5.5m (~18ft) at certain locations.
• Live Load: the roof was accessible to the public and was hence designed to carry a full occupancy live load

of 4.8kPa (~100psf)
• Dead Load: the whole roof was covered in an intensive green roof, with a varying additional load ranging

between 1.6-4.0kPa (~33-84psf).
• Architectural Requirements: The maximum dimensions of all structural roof members were fixed to satisfy

the requirements for installation of insulation and finishes.

The preliminary strength design was based on the simplified approach for an indeterminate structure discussed in the 
torsional design procedures section – the torsional stiffness of the spandrel beam is reduced to approximately zero and 
the forces are redistributed and carried in flexure throughout the rest of the system. In a paper discussing the relative 
distribution of torsion and bending moments between beams and slabs13, Gouda presents a similar case: a spandrel 
beam supporting an outer cantilevered beam-slab assembly on one side, and a continuous inner slab on the other. 
Without applying the simplified approach, the spandrel beam restrains the bending of the cantilevered slab by an 
unknown amount based on the relative stiffnesses of the members. But if the torsional stiffness is reduced to zero, the 
beam can be considered as a “knife-edge” support (i.e. rotation unrestrained), and the inner slab becomes the effective 
back-span to this cantilever and resists the full moment. See Figure 5 for a simplified depiction of the roof assembly 
in the case study structure, and the 2D free body diagrams for both modelling cases. 
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Figure 5 – Simplified cantilevered roof structure (left), and resulting moments in the non-simplified, and simplified 
cases (right) 

Cantilever deflections 

The preliminary strength design was performed satisfactorily, but when assessing the live load deflections, it was 
found that the ends of the cantilevers exceeded the immediate live-load and long-term deflections limits that were 
specified for the finishes. In this situation, the total tip deflection is a function of the cantilever beam flexural deflection 
and the spandrel beam twist, as illustrated in Fig. 6. Based on how the finishes were attached, the relative deflections 
were measured from the position of the deformed spandrel, hence its flexural deformations could be ignored. Aside 
from minor changes in slab tributary load, the flexural deformation of the cantilever can be considered independent 
of the torsional stiffness of the spandrel. From the particular mechanics and geometry of the structure under discussion, 
it was found that the deformations due to the twist of the beam were approximately double those due to flexure. 
Therefore, increasing the torsional stiffness to minimize this twist was considered a valid approach to take. To illustrate 
the stiffness design approach, only the immediate live-load case will be discussed – the deflection issues were 
magnified in the long-term case, but the same procedure can be applied to an analysis in any time domain. 

Δ,'-./$- =
wL
8𝐸𝐼

0

	Δ1+$%2+3 =	sinΘ ∙ 𝐿 

Figure 6 – Cantilever roof tip deflection as a function of flexural and torsional deformation (not to scale) 
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DESIGN EXAMPLE 
The following section presents the design of the spandrel beam (Fig. 7) based on the procedure that was outlined in 
the previous section. A summary of the design forces at the critical section, and the immediate cantilever tip deflections 
under live loads from the analysis model at each design step (Fig. 3) are shown in Table 2. Note that although 
Lampert’s equation is used in this design example in steps 4 and 6 to calculate GKcr, any secant-based method may 
be used. 

Figure 7 – Spandrel beam parameters 

Table 2. Summary of analysis results 

Step # µ 

Strength Design Serviceability 
Mu- 

kN•m 
(kip-ft) 

Vu 
kN 

(kip) 

Tu 
kN•m 

(kip-ft) 

 Dtotal 

mm 
(in) 

1 1 868 
(640) 

751 
(169) 

414 
(305) 

27.6 
(1.09) 

3 ≈0 948 
(699) 

796 
(179) ≈0 32.4 

(1.28) 

4 0.148 893 
(659) 

762 
(179) 

202 
(149) 

30.2 
(1.19) 

Step 1 

See Table 2 for the design forces at the critical section, and the immediate cantilever tip deflections under live loads 
from the analysis model with uncracked torsional stiffness (µ = 1). 

ϕTcr = 228 kN•m (168 kip-ft). Since Tu > ϕTcr the section is cracked. 

Step 2 

The cantilever roof is supported by both the spandrel beam and the back-span slab. As this is a statically indeterminate 
system, the redistribution of moments is possible, hence the compatibility design procedure should be followed. Tu is 
reduced to ϕTcr per clause 22.7.3.2. 

Step 3 

See Table 2 for the design forces at the critical section, and the immediate cantilever tip deflections under live loads 
from the analysis model with no torsional stiffness (µ ≈ 0). 

 Dmax= 31.1mm (1.22in), calculated for a cantilever of length 5600mm. Since  D > Dmax the stiffness should be modified. 
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Step 4 

The maximum cracked torsional stiffness was found to be 14.8% (µmax ≈ 0.148), based on assumed maximum 
reinforcement quantities of rl =4.5% and rt =1.5%. 

𝐺𝐾! = (0.4𝐸# ) ∙ 0.172 ∙ (900 ∙ 720") = 	702.6	 × 10"	kNm&	(245.1	 × 104	kip − in&)	

𝐺𝐾#$,67. =
4 ∙ 200,000 ∙ 434,125"

2660& ∙ 3 1
0.045 +

1
0.0156

= 	104.1	 × 10"	kNm&(36.3 × 104	kip − in&) 

See Table 2 for the design forces at the critical section, and the immediate cantilever tip deflections under live loads 
from the analysis model with no maximum cracked stiffness (µmax ≈ 0.148). 

Since  D < Dmax the deflection limit is attainable with a torsional stiffness below the maximum. 

Step 5 

The target stiffness to achieve the desired deflection is µ = 8.75%. 

𝜇(7$!-( =	
3Δ8!"#$%! −	Δ8&6

TΔ8'"( −	Δ8&U
(𝜇67. 	−	𝜇9)		 (7) 

𝜇(7$!-( =	
(31.1	 − 	32.4)
(30.2	 − 	32.4)

(0.148 − 0) 	= 	0.0875 

Step 6 

Based on Fig. 2, it is anticipated that a large quantity of reinforcement will be necessary to obtain μ = 8.75%. Providing 
16-35M bars as longitudinal reinforcement (6 on the top and 6 on the bottom, with 4 at mid-height) yields ρl = 2.47%.
The corresponding quantity of transverse reinforcement to obtain the target value of μ, ρt, was found to be 0.909%,
which corresponds to 15M stirrups spaced at 97.1 mm (3.82 in).

𝐺𝐾#$ = 𝜇(7$!-( ∙ 𝐺𝐾! = (0.0875) ⋅ (702.6 × 10:&) = 61.5 × 10"	kNm&	(21.5 × 104	kip − in&) 

𝜌( = W
4𝐸%𝐴&"

𝑝&&(𝐺𝐾)#$
−
1
𝜌'
X
;:

=	W
4 ⋅ 200,000 ⋅ 434,125"

2660& ⋅ 61.5 × 10:& −
1

0.0247X
;:

= 0.00909 

𝑠 =
𝐴(𝑝)
𝐴#*𝜌(

=
200 ⋅ 2860

648,000 ⋅ 0.00909 = 97.1	mm	(3.82	in) 

After designing for the required stiffness, the member should then be checked using the provisions in ACI318-19 to 
ensure that it can carry the required loads. The section size should first be checked to avoid crushing or excessive 
cracking according to clause 22.7.7.1: 

<:
𝑉/
𝑏<𝑑

;
&

+ W
𝑇/𝑝)
1.7𝐴+)&

X
&

≤ 𝜙10]𝑓#=		 (8) 

<:
796

720	 ⋅ 827.5;
&

+ :
228 ⋅ 2860

1.7 ⋅ 503,125&;
&

= 2.02	MPa	(296	psi) < 0.75 ⋅ 10 ⋅ √50 = 4.40	MPa	(638	psi) 

The torsional strength now needs to be calculated as the minimum of the torsion causing yielding of the longitudinal 
or transverse reinforcement. The strength associated with yielding of the longitudinal steel, Tn,long yield, can be directly 
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evaluated by an equation presented in another paper in this volume14.  If it is assumed that the flexural lever arm jd is 
equal to 0.9d, the ratio ω = Mn/Tn = 4.145 and the yield strength of steel is fy = 400 MPa (58 ksi): 

𝑇3,'+3!	?2-'@ =
4𝐴+𝐴%𝑓?𝑗𝑑 tan 45°
𝑝)𝑗𝑑 + 4𝐴+𝜔 tan45°

	 (9) 

𝑇3,'+3!	?2-'@ =
4 ⋅ 0.85 ⋅ 503,125 ⋅ (8 ⋅ 1000) ⋅ 400 ⋅ 0.9 ⋅ 827.5 ⋅ 1
2860 ⋅ 0.9 ⋅ 827.5 + 4 ⋅ 0.85 ⋅ 503,125 ⋅ 4.145 ⋅ 1 = 442	kNm	(326	kip − ft) 

The torsional strength associated with yielding of the stirrups, Tn,trans yield, can similarly be directly evaluated using 
another equation presented in the same paper14. Using the ratio ξ = Vn/Tn = 0.003491 mm-1 and calculating Vc in the 
absence of axial load using clause 22.5.5.1:  

𝑉# = 2]𝑓#=𝑏<𝑑	 (10) 

𝑉# = 2 ⋅ √50 ⋅ 720 ⋅ 827.5 = 699	kN	(157	kips) 

𝑇3,($73%	?2-'@ =
2𝐴+T𝑠𝑉# + 2𝐴(𝑑𝑓?U
𝑠(2𝐴+𝜉 + 2𝑑 tan 45°)

	 (11) 

𝑇3,($73%	?2-'@ =
2 ⋅ 0.85 ⋅ 503,125 ⋅ (97.1 ⋅ 699 + 2 ⋅ 200 ⋅ 827.5 ⋅ 400)
97.1(2 ⋅ 0.85 ⋅ 503,125 ⋅ 0.003491 + 2 ⋅ 827.5 ⋅ 1) = 380	kNm	(280	kip − ft) 

Tn,trans yield must also be limited by the strength of the member in pure torsion, Tn,pt, which is calculated using clause 
22.7.6.1.a: 

𝑇3,*( = 2𝐴+
𝐴(𝑓?(
𝑠 cot 45∘ 	 (12) 

𝑇3,*( = 2 ⋅ 0.85 ⋅ 503,125
200 ⋅ 400
97.1 ⋅ 1 = 705	kNm	(520	kip − ft) 

The factored torsional strength, ϕTn, is then the minimum of Tn,long yield, Tn,trans yield and Tn,pt: 

𝜙𝑇3 = 𝜙minl𝑇3,'+3!	?2-'@ , 𝑇3,($73%	?2-'@	, 𝑇3,*(m	 (13) 

𝜙𝑇3 = 0.75 ⋅ min{442, 380,705} = 	285	kNm(	(210	kip − ft) > 𝑇/ = 228	kNm	(168	kip − ft) 

The factored shear strength is then directly obtained as a function of ϕTn and ξ: 

𝜙𝑉3 = 𝜙𝜉𝑇3 = 0.75 ⋅ 0.003491 ⋅ 380 = 995	kN > VB = 796	kN	(179	kips) 

Summary 

The resulting design to achieve the target stiffness is generally conservative, with the shear and torsional strengths 
both being approximately 25% higher than the factored shear and torsion demand. Note that increasing the post-
cracking torsional stiffness requires a considerable amount of both longitudinal and transverse reinforcement. The 
calculated short-term deflection was decreased by 2.2mm, about 7%, which is within the range of inherent variability 
in structural deflections. Therefore, in this situation it might be deemed more economical to attempt to reduce 
deflections by employing other strategies based on modifying the surrounding structure. Ultimately, the decision on 
what strategy to use is at the discretion of the design engineer; the method proposed in this paper being one of many 
tools available. 
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CONCLUSION  
In the analysis of reinforced concrete structures, it is important to model the post-cracking stiffness of individual 
members as accurately as possible, as an incorrect assignment can lead to either unconservative or unrealistic design 
loads. For example, in a statically indeterminate structure, the relative stiffness of a member is proportional to its 
resultant internal forces and moments, hence an unusually high or low stiffness will lead to incorrect values. Sectional 
forces are also generated in elements as a function of the deformation they undergo to maintain compatibility with the 
surrounding structure. In such situations, assigning an overly high stiffness to an element will result in unrealistic 
sectional forces and moments, which would in actuality have been redistributed upon cracking. Furthermore, in 
situations where displacements are strongly related to the rotation of twisting members, having an accurate estimate 
of the post-cracking stiffness is necessary to check displacement limits under service loads. Knowing the post-cracking 
torsional stiffness is hence important when designing for both ultimate and serviceability limits states.  

Post-cracking stiffness is a function of the amount of reinforcement in a section; therefore, calculating an accurate 
value becomes an iterative process as the reinforcement is not known at the outset of a design. To simplify this process, 
ACI 318-19 provides typical values that can be used for post-cracking flexural stiffness as a function of the gross 
cross-section, in lieu of a more accurate calculation. Yet there is no equivalent code guidance with respect to post-
cracking torsional stiffness. This paper has aggregated the academic literature on the topic and used this information 
as the basis for a stiffness-based design procedure. The procedure is then implemented in a design case study of a 
reinforced concrete spandrel beam, which was required to reach a certain level of torsional stiffness to satisfy 
deflection requirements. The ability to directly design a beam for a certain stiffness removes the need to iteratively 
model and design a structure when an accurate measure of torsional stiffness and moment redistribution is required. 
The method is broadly formulated to be used with different material models and can be applied to any situation where 
a specific value of post-cracking torsional stiffness is required by a structural analysis.  

NOTATION 
A2 = Area enclosed by the centerlines of the corner longitudinal bars 
Acp = Area enclosed by outside perimeter of concrete cross section  
Ag = Gross area of concrete in the cross section 
Al = Total area of longitudinal reinforcement to resist torsion 
Ao = Area enclosed by shear flow path 
Aoh = Area enclosed by centerline of closed transverse reinforcement 
Ap = Area of prestressed reinforcement  
As = Area of longitudinal reinforcement on the flexural tension side of member 
As’ = Area of longitudinal reinforcement on the flexural compression side of member 
At = Area of one leg of closed transverse torsion reinforcement 
b = Short dimension of a rectangular cross section 
bw = Effective web width within depth d 
d = Distance from the extreme compression fibre to centroid of longitudinal tension reinforcement 
Ec = Young’s modulus of concrete 
Es = Young’s modulus of reinforcing steel 
fc’ = Specified compressive strength of concrete 
fy = Specified yield strength of reinforcement 
G = Shear modulus  
GKg = Uncracked torsional stiffness 
GKcr = Cracked torsional stiffness equal to the torque causing yielding divided by the twist at yield 
h = Long dimension of a rectangular cross section 
jd = Flexural lever arm 
K = St. Venant torsion constant 
Mu = Moment demand at section 
p2 = Perimeter enclosed by A2 
ph = Perimeter of the centerline of the closed transverse torsion reinforcement 
po = Perimeter of the shear flow path 
s = Spacing of transverse reinforcement 
Tcr = Cracking torque 
Tn = Nominal torsional strength of the member 
Tu = Torsion demand at section 
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Vc = Shear strength attributed to concrete 
Vu = Shear demand at section 
Β = Coefficient for determining K for a rectangular cross section 
μ = Ratio of cracked torsional stiffness to uncracked torsional stiffness, GKcr/GKg

μmax = Upper limit of μ based on maximum values of ρl and ρt 
ξ = Ratio of shear and torsion strength, Vn/Tn

ρl = Quantity of longitudinal reinforcement 
ρt = Quantity of transverse reinforcement 
ϕ = Reduction for shear and torsion in ACI 318-19. ϕ =0.75. 
ψ = Twist of member in units of angle per unit length 
ω = Ratio of moment and torsional strength, Mn/Tn 
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